Articles

Plasmodium falciparum: Adhesion Phenotype of Infected Erythrocytes Using Classical and Mini-Column Cytoadherence Techniques

Abstract

 

Background: Cytoadherence of Plasmodium falciparum- infected erythrocytes to host cells is an im-portant trait for parasite survival and has a major role in pathology of malaria disease. Infections with P. falciparum usually consist of several subpopulations of parasites with different adhesive prop-erties. This study aimed to compare relative sizes of various binding subpopulations of different P. falciparum isolates. It also investigated the adhesive phenotype of a laboratory P. falciparum line, A4, using different binding techniques.

Methods: Seven different P. falciparum isolates (ITG, A4, 3D7 and four field isolates) were cultivated to late trophozoite and schizont and then cytoadherence to cell differentiation 36 (CD36), intercellu-lar cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule (V-CAM) and E-selectin were examined. The relative binding sizes of parasite subpopulations to human receptors were measured by mini-column cytoadherence method. The adhesion phenotype of P. falciparum-A4 line was evaluated by in vitro static, flow-based and mini-column binding assays.

Results: The relative binding size of ITG, A4 and 3D7 clones to a column made with CHO/ICAM-1 was 68%, 54% and 0%, respectively. The relative binding sizes of these lines to CHO/CD36 were 59.7%, 28.7% and 0%, respectively. Different field isolates had variable sizes of respective CD36 and ICAM1-binding subpopulations. A4 line had five different subpopulations each with different binding sizes.

Conclusion: This study provided further evidence that P. falciparum isolates have different binding subpopulations sizes in an infection. Furthermore, measurement of ICAM-1 or CD36 binding sub-populations may practical to study the cytoadherence phenotypes of P. falciparum field isolates at the molecular level.

Treutiger CJ, Heddini A, Fernandez V, Muller WA and Wahlgren M. PECAM-1/CD31, an endothelial receptor for binding Plasmodium falciparum-infected erythrocytes. Nat Med. 1997; 3(1): 1405-1408.

Chen Q, Schlichtherle M, Wahlgren M. Molecular aspects of severe malaria. Clin Microbiol Rev. 2000; 13(3): 439-450.

Munasinghe A, Ileperuma M, Premawansa G, Handunnetti S, Premawansa S. Spleen modulation of cytoadherence properties of Plasmodium falciparum. Scand J Infect Dis. 2009; 41(6-7): 538-539.

Patnaik JK, Das BS, Mishra SK, Mohanty S, Satpathy SK, Mohanty D. Vascular clogging, mononuclear cell margination, and enhanced vascular permeability in the pathogenesis of human cerebral malaria. Am J Trop Med Hyg. 1994; 51(5): 642-647.

Rasti N, Wahlgren M, Chen Q. Molecular aspects of malaria pathogenesis. FEMS Immunol Med Microbiol. 2004; 41(1): 9-26.

Baruch DI, Pasloske BL, Singh HB. Bi X, Ma XC, Feldman M, Taraschi TF, Howard RJ. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995; 82(1): 77-87.

Su XZ, Heatwole VM, Wertheimer SP, Wellems TE, Revetch JA, Peterson DS, Herrfeldet JA, Guinet F. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995; 82(1): 89-100.

Oquendo P, Hundt E, Lawler J, Seed B. CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Cell. 1989; 58(1): 95-101.

Barnwell JW, Asch AS, Nachman RL, Yamaya M, Aikawa M, Ingravallo P. A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. J Clin Invest. 1989; 84(3): 765-772.

Ockenhouse CF, Ho M, Tandon NN, Van Seventer GA, Shaw S, White NJ, Jameison GA,Chulay JD, Webster HK. Molecular basis of sequestration in severe and uncomplicated Plasmodium falciparum malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. J Infect Dis. 1991; 164(1): 163-169.

Kaul DK, Liu XD, Nagel RL, Shear HL. Microvascular hemodynamics and in vivo evidence for the role of intercellular adhesion molecule-1 in the sequestration of infected red blood cells in a mouse model of lethal malaria. Am J Trop Med Hyg. 1998; 58(2): 240-247.

Ockenhouse CF, Tegoshi T, Maeno Y, Benjamin C, Ho M, Kan KE, Thway Y, Win K, Aikawa M, Lobb RR. Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med. 1992; 176(4): 1183-1189.

Craig A, Fernandez-Reyes D, Mesri M, Mc Dowall A, Altieri DC, Hogg N, Newbold C. A functional analysis of a natural variant of intercellular adhesion molecule-1 (ICAM-1Kilifi). Hum Mol Genet. 2000; 9(4): 525-530.

Gray C, McCormick C, Turner G, Craig A. ICAM-1 can play a major role in mediating P. falciparum adhesion to endothelium under flow. Mol Biochem Parasitol. 2003; 128(2): 187-193.

Swerlick RA, Lee KH, Li LJ, Sepp NT, Caughman SW, Lawley TJ. Regulation of vascular cell adhesion molecule 1 on human dermal microvascular endothelial cells. J Immunol. 1992; 149(2): 698-705.

Tse MT, Chakrabarti K, Gray C, Chitnis CE, Craig A. Divergent binding sites on intercellular adhesion molecule-1 (ICAM-1) for variant Plasmodium falciparum isolates. Mol Microbiol. 2004; 51(4): 1039-1049.

Fairhurst RM, Baruch DI, Brittain NJ, Ostera GR, Wallach JS, Hoang HL, Hayton K, Guindo A, Makobongo MO, Schwartz OM, Tounkara A, Doumbo OK, Diallo DA, Fuji-oka H, Ho M, Wellems TE. Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria. Nature. 2005; 435(7045): 1117-1121.

Chakravorty SJ, Craig A. The role of ICAM-1 in Plasmodium falciparum cytoadherence. Eur J Cell Biol. 2005; 84(1): 15-27.

Korn C, Schwarz US. Efficiency of initiating cell adhesion in hydrodynamic flow. Phys Rev Lett. 2006; 97(13): 138103.

Bruce MC, Galinski MR, Barnwell JW, Don-nelly CA, Walmsley M, Alpers MP, Walliker D. Genetic diversity and dynamics of plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology. 2000; 121 ( Pt 3): 257-272.

Kyes S, Horrocks P, Newbold C. Antigenic variation at the infected red cell surface in malaria. Annu Rev Microbiol. 2001; 55: 673-707.

Chattopadhyay R, Taneja T, Chakrabarti K, Pillai CR, Chitnis CE. Molecular analysis of the cytoadherence phenotype of a Plasmodium falciparum field isolate that binds intercellular adhesion molecule-1. Mol Biochem Parasitol. 2004; 133(2): 255-265.

Phiri H, Montgomery J, Molyneux M, Craig A. Competitive endothelial adhesion between Plasmodium falciparum isolates under physiological flow conditions. Malar J. 2009; 8(21): 214.

Kalantari N, Ghaffari S. Mini-Column for Cytoadherence: A New Method for Measur-ing the Relative Size of Binding Subpopula-tions in Plasmodium falciparum Isolates. Iranian J Parasitol. 2011; 6 (4): 8-16.

Mphande F, Nilsson S, Bolad A. Culturing of erythrocytic asexual stages of Plasmodium fal-ciparum and P. vivax. In: Moll K et al.. Methods in malaria research. 2008. P. 1-3. Available: http://www.mr4.org/Publications/MethodsinMalariaResearch.aspx

Vogt A. Cultivation of CHO, COS, HUVEC, melanoma, and L cells. In: Moll K, Ljungström I, Perlmann H, Scherf A, Wahlgren M. Methods in malaria research. 2008. P. 41-42. Available from: http://www.mr4.org/Publications/MethodsinMalariaResearch.aspx

Marsh K, Marsh VM, Brown J, Whittle HC, Greenwood BM. Plasmodium falciparum: the behavior of clinical isolates in an in vitro model of infected red blood cell sequestration. Exp Parasitol. 1988; 65(2): 202-208.

Rowe JA, Claessens A, Corrigan RA, Arman M. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med. 2009; 11: e16.

Cojean S, Jafari-Guemouri S, Le Bras J, Durand R. Cytoadherence characteristics to endothelial receptors ICAM-1 and CD36 of Plasmodium falciparum populations from severe and uncomplicated malaria cases. Parasite. 2008; 15(2): 163-169.

Newbold C, Craig A, Kyes S, Rowe A, Fernandez-Reyes D, Fagan T. Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int J Parasitol. 1999; 29(6): 927-937.

Janes JH, Wang CP, Levin-Edens E, Vigan-Womas I, Guillotte M, Melcher M, Mercereau-Puijalon O, Smith JD. Inv-estigating the host binding signature on the Plasmodium falciparum PfEMP1 protein family. PLoS Pathog. 2011; 7(5): e1002032.

Udomsangpetch R, Taylor BJ, Looareesuwan S, White NJ, Elliott JF, Ho M. Receptor specificity of clinical Plasmodium falciparum isolates: nonadherence to cell-bound E-selectin and vascular cell adhesion molecule-1. Blood. 1996; 88(7): 2754-2760.

Udomsangpetch R, Reinhardt PH, Schollaardt T, Elliott JF, Kubes P, Ho M. Promiscuity of clinical Plasmodium falciparum isolates for multiple adhesion molecules under flow conditions. J Immunol, 1997; 158(9): 4358-4364.

Newbold C, Warn P, Black G, Berendt A, Craig A, Snow B, Msobo M, Peshu N, Marsh K.. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am J Trop Med Hyg. 1997; 57(4): 389-398.

McCormick CJ, Craig A, Roberts D, Newbold CI, Berendt AR. Intercellular adhesion molecule-1 and CD36 synergize to mediate adherence of Plasmodium falciparum-infected erythrocytes to cultured human microvascular endothelial cells. J Clin Invest. 1997; 100(10): 2521-2529.

Joergensen L, Bengtsson DC, Bengtsson A, Ronander L, Berger SS, Turner L, Dalgaard MB, Cham GK, Victor ME, Lavstsen T, Theander TG, Arnot DE, Jensen ATR. Surface co-expression of two different PfEMP1 antigens on single plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1. PLoS Pathog. 2010; 6: e1001083.

Cooke BM, Coppel RL. Cytoadhesion and falciparum malaria: going with the flow. Parasitol Today. 1995; 11(8): 282-287.

Cooke BM, Rogerson SJ, Brown GV, Coppel RL. Adhesion of malaria-infected red blood cells to chondroitin sulfate A under flow conditions. Blood. 1996; 88(10): 4040-4044.

Crabb BS, Cooke BM, Reeder JC, Coppel RL, Brown GV, Wickham ME, Davern KM, Caruana SR, Waller RF, Cowman AF. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell. 1997; 89(2): 287-296.

Files
IssueVol 8 No 1 (2013) QRcode
SectionArticles
Keywords
CD36 Cytoadherence E-selectin ICAM-1 P. falciparum V-CAM

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Kalantari N, Ghaffari S, Bayani M. Plasmodium falciparum: Adhesion Phenotype of Infected Erythrocytes Using Classical and Mini-Column Cytoadherence Techniques. Iran J Parasitol. 1;8(1):158-166.