Quercetin and nano Quercetin: Cytotoxicity, Antileishmanial and Antimicrobial Activities against resistance strains
Abstract
Background: Quercetin, a natural polyphenolic flavonoid compound, showed high anti-cancer, anti-bacterial, and anti-viral activities. Given the importance of microbial diseases, the lack of definitive treatment for many of them, and the emergence of drug resistance, it is essential to use various natural compounds to investigate their antimicrobial effects. We aimed to assess the anti-bacterial and anti-leishmanial activity in vitro and in vivo study.
Methods: Anti-leishmanial effects of quercetin and nano-quercetin were evaluated on promastigote and amastigote stages in vitro. The minimal inhibitory concentrations (MICs) were determined by the broth dilution method using six species of clinical pathogenic bacteria strains, including Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Campylobacter jejuni, and Pseudomonas aeruginosa. Furthermore, the cytotoxicity effects of the drugs were evaluated using MTT assay.
Results: All tested compounds presented anti-leishmanial and anti-microbial properties. Gram-negative bacteria were more resistant than gram-positive bacteria. Quercetin and nano-quercetin in concentrations of 200 and 400 µg/ml showed similar effectiveness on promastigote and amastigote of L. infantum in comparison to positive controls. In all experiments, nano-quercetin was more effective than quercetin. Moreover, no cytotoxicity activity was observed on Normal mouse fibroblast cell line (L929) in vitro.
Conclusion: Nano-quercetin and even quercetin had excellent anti-microbial and anti-parasitic effects, and given that no toxicity was observed from these compounds even at higher concentrations, these compounds can be used as a suitable alternative for the treatment of parasitic and microbial diseases.
2. Elmi T, Esboei BR, Sadeghi F, et al. In vitro antiprotozoal effects of nano-chitosan on Plasmodium falciparum, Giardia lamblia and Trichomonas vaginalis. Acta Parasitol. 2021;66:39-52.
3. Laing R, Gillan V, Devaney E. Ivermectin–old drug, new tricks? Trends Parasitol. 2017;33:463-472.
4. Park JY. Artemisinin and the nobel prize in physiology or medicine 2015. Korean J Pain. 2019;32:145-146.
5. Miller-Petrie M, Pant S, Laxminarayan R. Drug-resistant infections. Major Infectious Diseases. 3rd edition. 2017
6. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: A review. F1000Res. 2017;6:750.
7. Ponte-Sucre A, Gamarro F, Dujardin J-C, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis. 2017;11:e0006052.
8. Kanje LE, Kumburu H, Kuchaka D, et al. Short reads-based characterization of pathotype diversity and drug resistance among Escherichia coli isolated from patients attending regional referral hospitals in tanzania. BMC Med Genomics. 2024;17:110.
9. Ullah S, Khan SUH, Khan MJ, et al. Multiple-drug resistant shiga toxin-producing E. coli in raw milk of dairy bovine. Trop Med Infect Dis. 2024;9:64.
10. Roberts CA, Buikstra JE. Bacterial infections. Ortner's identification of pathological conditions in human skeletal remains. Elsevier; 2019:321-439.
11. Baker KS, Dallman TJ, Field N, et al. Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species. Nat Commun. 2018;9:1462.
12. Yarahmadi M, Fakhar M, Ebrahimzadeh MA, Chabra A, Rahimi-Esboei B. The anti-giardial effectiveness of fungal and commercial chitosan against Giardia intestinalis cysts in vitro. J Parasit Dis. 2016;40:75-80.
13. Rahimi-Esboei B, Fakhar M, Chabra A, Hosseini M. In vitro treatments of Echinococcus granulosus with fungal chitosan, as a novel biomolecule. Asian Pac J Trop Biomed. 2013;3:811-815.
14. Hanif H, Abdollahi V, Javani Jouni F, et al. Quercetin nano phytosome: As a novel anti-Leishmania and anti-malarial natural product. J Parasit Dis. 2023;47:257-264.
15. Larson AJ, Symons JD, Jalili T. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy and mechanisms. Adv Nutr. 2012;3:39-46.
16. Baksi R, Singh DP, Borse SP, et al. In vitro and in vivo anticancer efficacy potential of quercetin loaded polymeric nanoparticles. Biomed Pharmacother. 2018;106:1513-1526.
17. Ossola B, Kääriäinen TM, Männistö PT. The multiple faces of quercetin in neuroprotection. Expert Opin Drug Saf. 2009; 8:397-409.
18. Kelly GS. Quercetin. Monograph. Altern Med Rev. 2011;16:172-194.
19. Formica J, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33:1061-1080.
20. Sharmila G, Bhat F, Arunkumar R, et al. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin Nutr. 2014;33:718-726.
21. Ghadi ZS, Dinarvand R, Asemi N, et al. Preparation, characterization and in vivo evaluation of novel hyaluronan containing niosomes tailored by box-behnken design to co-encapsulate curcumin and quercetin. Eur J Pharm Sci. 2019;130:234-246.
22. Esboei BR, Mohebali M, Mousavi P, Fakhar M, Akhoundi B. Potent antileishmanial activity of chitosan against iranian strain of Leishmania major (mrho/ir/75/er): In vitro and in vivo assay. J Vector Borne Dis. 2018;55:111-115.
23. Najm M, Hadighi R, Heidari-Kharaji M, et al. Anti-leishmanial activity of Artemisia persica, A. spicigera, and A. fragrance against Leishmania major. Iran J Parasitol. 2021; 16(3):464-473.
24. Pourhajibagher M, Nasrollahi M, Eini MI, Rahimi Esboei B. Prevalence of β-lactamase enzyme in isolated bacteria in patients with nosocomial infections, skin and wound infections from imam khomeini hospital of sari province, 2010. J Mazandaran Univ Med Sci. 2013; 22:261-265.
25. Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front Microbiol. 2019;10:911.
26. Shokrzadeh M, Ebrahimnejad P, Omidi M, Shadboorestan A, Zaalzar Z. Cytotoxity evaluation of docetaxel nanoparticles by culturing hepg2 carcinoma cell lines. J Mazandaran Univ Med Sci. 2012;22:2-10.
27. Chabra A, Rahimi-Esboei B, Habibi E, et al. Effects of some natural products from fungal and herbal sources on Giardia lamblia in vivo. Parasitology. 2019;146:1188-1198.
28. Esghaei M, Ghaffari H, Esboei BR, et al. Evaluation of anticancer activity of Camellia sinensis in the caco-2 colorectal cancer cell line. Asian Pac J Cancer Prev. 2018; 19(6):1697-1701.
29. Raeisi M, Mirkarimi K, Jannat B, et al. In vitro effect of some medicinal plants on Leishmania major strain mrho/ir/75/er. Med Lab J. 2020;14:46-52.
30. Niknam A, Rahimi Esboei B, Chabra A. Anti-Trichomonas vaginalis effect of methanolic extracts of sambucus nigra in comparison with metronidazole. Jundishapur J Nat Pharm Prod. 2020; 15(4):e65872.
31. Lakhanpal P, Rai DK. Quercetin: A versatile flavonoid. Internet J Med Update. 2007;2:22-37.
32. Kim CH, Kim J-E, Song Y-J. Antiviral activities of quercetin and isoquercitrin against human herpesviruses. Molecules. 2020;25:2379.
33. Li M, Xu Z. Quercetin in a lotus leaves extract may be responsible for antibacterial activity. Arch Pharm Res. 2008; 31:640-644.
34. Ezzati M, Yousefi B, Velaei K, Safa A. A review on anti-cancer properties of quercetin in breast cancer. Life Sci. 2020;248:117463.
35. Hirai I, Okuno M, Katsuma R, Arita N, Tachibana M, Yamamoto Y. Characterisation of anti‐Staphylococcus aureus activity of quercetin. Int J Food Sci Technol. 2010;45:1250-1254.
36. Kallinikova V, Matekin P, Ogloblina T, et al. [Anticancer properties of flagellate protozoan Trypanosoma cruzichagas, 1909]. Izv Akad Nauk Ser Biol. 2001; (3):299-311.
37. Baghel SS, Shrivastava N, Baghel RS, et al. A review of quercetin: Antioxidant and anticancer properties. World J Pharm Pharmaceutical Sci. 2012;1:146-160.
38. Salehi B, Machin L, Monzote L, et al. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega. 2020; 5(20):11849-11872.
Files | ||
Issue | Vol 20 No 3 (2025) | |
Section | Original Article(s) | |
Keywords | ||
Quercetin Nano-quercetin Anti-bacterial Anti-leishmania |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |