Original Article

Comparative Analysis of Nanos and Ago Genes Expression in the Germinative Cells Isolated from Germinal Layer and the Neck Region of Echinococcus granulosus

Abstract

Background: We aimed to evaluate the differential expression of nanos and ago genes in the protoscoleces, germinal layer, the neck, and the sucker regions of adult Echinococcus granulosus.
Methods: The study was conducted in 2018 at the Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran. In the present study E. granulosus protoscoleces were cultured in a di-phasic medium to obtain strobilated worms. The strobilated worms were harvested and using a sterile razor blade, the neck region was separated. In the molecular study the neck sections were compared with the tissues derived from the suckers from the same worm. The primers were specifically designed for RT-qPCR on nanos and ago. The germinative cells were isolated from the cyst germinal layer and cultured in DMEM for further molecular studies. The Immunohistochemical profile was designed to explore the nature of nanos protein in the strobilated worms. Differences between and within groups were statistically assessed relative to the protoscoleces.
Results: An increasing nanos gene expressions were found in sucker, neck, cells and germinal layer in comparison to the protoscoleces. The expression of ago gene was decreased in sucker, cell and germinal layer, and increased in the neck region in comparison to the protoscoleces. The results showed that both genes were expressed in all developmental stages of E. granulosus.
Conclusion: nanos and ago genes were differentially expressed at different developmental stages of E. granulosus and may contribute to differentiation of the parasite.

1. Koziol U. Evolutionary developmental biology (evo-devo) of cestodes. Exp Parasitol. 2017;180:84–100.
2. Koziol U, Rauschendorfer T, Zanon Rodríguez L, Krohne G, Brehm K. The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis. Evodevo. 2014;5(1):10.
3. Koziol U, Domínguez MF, Marín M, Kun A, Castillo E. Stem cell proliferation during in vitro development of the model cestode Mesocestoides corti from larva to adult worm. Front Zool. 2010;7:22.
4. Wikgren BJP, Gustafsson MKS. Cell proliferation and histo-genesis in diphyllobothrid tapeworms (Cestoda). Acta Academiae Aboensis. 1971;31(2).
5. Rink JC. Stem cell systems and regeneration in planaria. Dev Genes Evol. 2013;223(1–2):67–84.
6. Reddien PW. Constitutive gene expression and the specification of tissue identity in adult planarian biology. Trends Genet. 2011;27(7):277–85.
7. Borhani M, Fathi S, Darabi E, et al. Echinococcoses in Iran, Turkey, and Pakistan: Old Diseases in the New Millennium. Clin Microbiol Rev. 2021;34(3): e0029020.
8. Gustafsson MKS. Studies on cytodifferentiation in the neck region of Diphyllobothrium dendriticum Nitzsch, 1824 (Cestoda, Pseudophyllidea). Z Parasitenkd. 1976;50(3):323–9.
9. Hulskamp M, Schneitz K, Pruitt RE. Genetic Evidence for a Long-Range Activity That Directs Pollen Tube Guidance in Arabidopsis. Plant Cell. 1995;7(1):57–64.
10. Dahanukar A, Wharton RP. The Nanos gradient in Drosophila embryos is generated by translational regulation. Genes Dev. 1996;10(20):2610–20.
11. Ye B, Petritsch C, Clark IE, Gavis ER, Jan LY, Jan YN. Nanos and Pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Curr Biol. 2004;14(4):314–21.
12. Schmitt-Engel C, Cerny AC, Schoppmeier M. A dual role for nanos and pumilio in anterior and posterior blastodermal patterning of the short-germ beetle Tribolium castaneum. Dev Biol. 2012;364(2):224–35.
13. Subramaniam K, Seydoux G. nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development. 1999;126(21):4861–71.
14. Saberi A, Jamal A, Beets I, Schoofs L, Newmark PA. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians. PLoS Biol. 2016;14(5):e1002457.
15. Wagner DE, Ho JJ, Reddien PW. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell. 2012;10(3):299–311.
16. Fontenla S, Rinaldi G, Smircich P, Tort JF. Conservation and diversification of small RNA pathways within flatworms. BMC Evol Biol. 2017;17(1):215.
17. Kashima M, Agata K, Shibata N. Searching for non-transposable targets of planarian nuclear PIWI in pluripotent stem cells and differentiated cells. Dev Growth Differ. 2018;60(5):260–77.
18. Smyth JD, Davies Z. In vitro culture of the strobilar state of Echinococcus granulosus (sheep strain): a review of basic problems and results. Int J Parasitol. 1974;4(6):631–44.
19. Mousavi SM, Afgar A, Mohammadi MA, Mortezaei S, Sadeghi B, Harandi MF. Calmodulin-specific small interfering RNA induces consistent expression suppression and morphological changes in Echinococcus granulosus. Sci Rep. 2019;9(1):3894.
20. Albani CM, Cumino AC, Elissondo MC, Denegri GM. Development of a cell line from Echinococcus granulosus germinal layer. Acta Trop. 2013;128(1):124–9.
21. Albani CM, Elissondo MC, Cumino AC, Chisari A, Denegri GM. Primary cell culture of Echinococcus granulosus developed from the cystic germinal layer: biological and functional characterization. Int J Parasitol. 2010;40(11):1269–75.
22. Spiliotis M, Mizukami C, Oku Y, Kiss F, Brehm K, Gottstein B. Echinococcus multilocularis primary cells: improved isolation, small-scale cultivation and RNA interference. Mol Biochem Parasitol. 2010;174(1):83–7.
23. Rossi L, Salvetti A, Marincola FM, Lena A, Deri P, Mannini L, et al. Deciphering the molecular machinery of stem cells: A look at the neoblast gene expression profile. Genome Biol. 2007;8(4):R62.
24. Collins JJ, Wang B, Lambrus BG, Tharp ME, Iyer H, Newmark PA. Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature. 2013;494(7438):476–9.
25. Wang B, Collins JJ, Newmark PA. Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni. Elife. 2013; 2:e00768.
26. Lu Z, Quack T, Hahnel S, Gelmedin V, Pouokam E, Diener M, et al. Isolation, enrichment and primary characterisation of vitelline cells from Schistosoma mansoni obtained by the organ isolation method. Int J Parasitol. 2015;45(9–10):663–72.
27. deWalick S, Tielens AGM, van Hellemond JJ. Schistosoma mansoni: the egg, biosynthesis of the shell and interaction with the host. Exp Parasitol. 2012;132(1):7–13.
28. Hulstijn M, Barros LA, Neves RH, Moura EG, Machado-Silva JR. Morphological changes in the reproductive organs of male and female Schistosoma mansoni worms caused by streptozotocin, a drug used to induce diabetes mellitus. Parasitology. 2003;126(Pt 1):53–61.
29. de Andrade LF, de Mourão MM, Geraldo JA, Coelho FS, Silva LL, Neves RH, et al. Regulation of Schistosoma mansoni Development and Reproduction by the Mitogen-Activated Protein Kinase Signaling Pathway. PLoS Negl Trop Dis. 2014;8(6):e2949.
30. Skelly PJ, Da’dara A, Harn DA. Suppression of cathepsin B expression in Schistosoma mansoni by RNA interference. Int J Parasitol. 2003;33(4):363–9.
31. Correnti JM, Brindley PJ, Pearce EJ. Long-term suppression of cathepsin B levels by RNA interference retards schistosome growth. Mol Biochem Parasitol. 2005;143(2):209–15.
32. Oulhen N, Wessel GM. Every which way--nanos gene regulation in echinoderms. Genesis. 2014;52(3):279–86.
33. Wang Z, Smith W, Major DE, De Vries GJ. Sex and species differences in the effects of cohabitation on vasopressin messenger RNA expression in the bed nucleus of the stria terminalis in prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus). Brain Res. 1994;650(2):212–8.
34. Lai F, Singh A, King M Lou. Xenopus Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells. Development. 2012;139(8):1476-86.
35. Yigit E, Batista PJ, Bei Y, et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell. 2006;127(4):747–57.
36. Chen J, Yang Y, Guo S, et al. Molecular cloning and expression profiles of Argonaute proteins in Schistosoma japonicum. Parasitol Res. 2010;107(4):889–99.
37. Luo R, Xue X, Wang Z, Sun J, Zou Y, Pan W. Analysis and characterization of the genes encoding the Dicer and Argonaute proteins of Schistosoma japonicum. Parasit Vectors. 2010;3:90.
38. Cogswell AA, Collins JJ, Newmark PA, Williams DL. Whole mount in situ hybridization methodology for Schistosoma mansoni. Mol Biochem Parasitol. 2011;178(1–2):46–50.
Files
IssueVol 19 No 2 (2024) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijpa.v19i2.15849
Keywords
Hydatid disease Development Differentiation Germinative cells Strobilation

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Yazdani A, Khamesi N, Keyhani A, Nasibi S, Mohammadi MA, Mousavi SM, Derakhshani A, Fasihi Harandi M. Comparative Analysis of Nanos and Ago Genes Expression in the Germinative Cells Isolated from Germinal Layer and the Neck Region of Echinococcus granulosus. Iran J Parasitol. 2024;19(2):131-139.