Original Article

Cytotoxic and Immunomodulatory Activity of Curcumin and Chitosan on Experimental Toxoplasmosis

Abstract

Background: Toxoplasma gondii is a pathogenic parasite with worldwide distribution. We investigated curcumin and chitosan in combination on the viability of T. gondii tachyzoites in silico, in vitro and in vivo.
Methods: A 3D model was employed in Urmia University of Medical Sciences, Urmia, Iran in 2021 to study the interaction between curcumin and dihydrofolate reductase (DHFR). Ramachandran root-mean-square deviation and VERIFY3D validated the model. Cytotoxicity of curcumin and chitosan was evaluated by MTT viability assay. BALB/c mice infected with 104 Toxoplasma organisms were treated with curcumin, chitosan, and the combination of curcumin+chitosan. Serum levels of inducible NO synthetase (iNOs), interferon gamma (IFN-γ), interleukin (IL)-5, glutamate oxaloacetic transaminases (SGOT), and glutamic pyruvate transaminase (SGPT) were determined.
Result: Curcumin-DHFR and curcumin-DHPS (dihydropteroate synthase) interactions and calculated enzyme energy indicated an excellent affinity for curcumin with DHFR, but not DHPS. MTT results of concurrent treatments demonstrated IC50 rates of 0.1, 0.05, and 0.01 mg/ml at 24, 48, and 72h, respectively. IFN-γ, IL-5 and iNOs levels in curcumin+chitosan treated mice were 1.71, 0.51, and 1.51 IU/L, while those of SGOT and SGPT were 76 and 84 IU/L, respectively.
Conclusion: The combination of curcumin and chitosan increased survival time of infected mice by seven days. Curcumin and chitosan in combination regulated the immune system and reduced liver damage, potentially forming the basis of a new treatment for toxoplasmosis.

1. Saki J, Mohammadpour N, Moramezi F, et al. Seroprevalence of Toxoplasma gondii in women who have aborted in comparison with the women with normal delivery in Ahvaz, southwest of Iran. ScientificWorldJournal. 2015;2015: 764369.
2. Boyer K, Hill D, Mui E, Wroblewski K, et al. Unrecognized ingestion of Toxoplasma gondii oocysts leads to congenital toxoplasmosis and causes epidemics in North America. Clin Infect Dis. 2011;53(11):1081-9.
3. Khademvatan S, Saki J, Khajeddin N, et al. Toxoplasma gondii exposure and the risk of schizophrenia. Jundishapur J Microbiol. 2014;7(11): e12776.
4. Teimouri A, Azami SJ, Keshavarz H, et al. Anti-Toxoplasma activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain. Int J Nanomedicine. 2018; 13:1341-51.
5. Aspinall TV, Guy EC, Roberts KE, et al. Molecular evidence for multiple Toxoplasma gondii infections in individual patients in England and Wales: public health implications. Int J Parasitol. 2003;33(1):97-103.
6. Teimouri A, Goudarzi F, Goudarzi K, et al. Toxoplasma gondii Infection in Immunocompromised Patients in Iran (2013–2022): A Systematic Review and Meta-Analysis. Iran J Parasitol. 2022;17(4):443-457.
7. Azami SJ, Teimouri A, Keshavarz H, et al. Curcumin nanoemulsion as a novel chemical for the treatment of acute and chronic toxoplasmosis in mice. Int J Nanomedicine. 2018;13:7363-7374.
8. Shojaee S, Firouzeh N, Keshavarz H, et al. Nanosilver colloid inhibits Toxoplasma gondii tachyzoites and bradyzoites in vitro. Iran J Parasitol. 2019;14(3):362-367.
9. Azami SJ, Amani A, Keshavarz H, et al. Nanoemulsion of atovaquone as a promising approach for treatment of acute and chronic toxoplasmosis. Eur J Pharm Sci. 2018;117:138-46.
10. Kadkhodamohammadi M, Jaberi M, Karimimousivandi P, et al. Identification of new inhibitors of the Toxoplasma gondii by using in-silico drug repurposing. BioRxiv. 2019; 560284.
11. Khademvatan S, Adibpour N, Eskandari A, et al. In silico and in vitro comparative activity of novel experimental derivatives against Leishmania major and Leishmania infantum promastigotes. Exp Parasitol. 2013;135(2):208-16.
12. de Moraes J. Natural products with antischistosomal activity. Future Med Chem. 2015;7(6):801-20.
13. Moran HB, Turley JL, Andersson M, et al. Immunomodulatory properties of chitosan polymers. Biomaterials. 2018;184:1-9.
14. Ali M, Afzal M, Verma M, et al. Improved antifilarial activity of ivermectin in chitosan–alginate nanoparticles against human lymphatic filarial parasite, Brugia malayi. Parasitol Res. 2013;112(8):2933-43.
15. Yang J, Yan R, Roy A, et al. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7-8.
16. Van Aalten DM, Bywater R, Findlay JB, et al. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des. 1996;10(3):255-62.
17. Kumari R, Kumar R, Consortium OSDD, Lynn A. g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951-62.
18. Yousefi E, Eskandari A, Javad Gharavi M, et al. In vitro activity and cytotoxicity of Crocus sativus extract against Leishmania major (MRHO/IR/75/ER). Infect Disord Drug Targets. 2014;14(1):56-60.
19. Khademvatan S, Eskandari A, Saki J, et al. Cytotoxic activity of Holothuria leucospilota extract against Leishmania infantum in vitro. Adv Pharmacol Sci. 2016; 2016:8195381.
20. Khademvatan S, Eskandari K, Hazrati-Tappeh K, et al. In silico and in vitro comparative activity of green tea components against Leishmania infantum. J Glob Antimicrob Resist. 2019;18:187-94.
21. Ashwinder K, Kho MT, Chee PM, et al. Targeting heat shock proteins 60 and 70 of Toxoplasma gondii as a potential drug target: In silico approach. Interdiscip Sci. 2016;8(4):374-87.
22. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, et al. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014;2014: 186864.
23. Mirzaalizadeh B, Sharif M, Daryani A, et al. Effects of Aloe vera and Eucalyptus methanolic extracts on experimental toxoplasmosis in vitro and in vivo. Exp Parasitol. 2018;192:6-11.
24. Varalakshmi C, Ali AM, Pardhasaradhi B, et al. Immunomodulatory effects of curcumin: in-vivo. Int Immunopharmacol. 2008; 8(5):688-700.
25. Jagetia GC, Aggarwal BB. “Spicing up” of the immune system by curcumin. J Clin Immunol. 2007;27(1):19-35.
26. Gertsch J, Güttinger M, Heilmann J, Sticher O. Curcumin differentially modulates mRNA profiles in Jurkat T and human peripheral blood mononuclear cells. Bioorg Med Chem. 2003;11(6):1057-63.
27. Saadatmand M, Al-Awsi GRL, Alanazi AD, et al. Green synthesis of zinc nanoparticles using Lavandula angustifolia Vera. Extract by microwave method and its prophylactic effects on Toxoplasma gondii infection. Saudi J Biol Sci. 2021;28(11):6454-60.
28. Yarovinsky F. Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol. 2014;14(2):109-21.
29. Alajmi RA, Al-Megrin WA, Metwally D, et al. Anti-Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spina-christi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice. Biosci Rep. 2019;39(5): BSR20190379.
30. Sylvio M, D’Alessandro AAB, Avelar J, et al. Experimental toxoplasmosis: evaluation of the hepatic damage in murines. Rev Patol Trop. 2014;43(3):303-12.
Files
IssueVol 19 No 2 (2024) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijpa.v19i2.15858
Keywords
Toxoplasma gondii Curcumin Chitosan In silico

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Rezgi M, Yousefi E, Jafari B, Asadi N, Khademvatan S, Howarth G. Cytotoxic and Immunomodulatory Activity of Curcumin and Chitosan on Experimental Toxoplasmosis. Iran J Parasitol. 2024;19(2):224-237.