In Vitro Study on Four Types of Commercial Lectins on Leishmania infantum, L. major and L. tropica with Stage-Specific Binding and Leishmania Species Identification
Abstract
Background: We aimed to verify the susceptibility of Leishmania infantum, L. major and L. tropica, to commercial lectins in order to identify the three Leishmania species.
Methods: The degree of agglutination was determined both macroscopically and microscopically and was scored negative (-) to positive (from 1+- 4+) based on their percentage of agglutination.
Results: Jacalin and UEA-1 were capable of agglutination of L. infantum isolates in both logarithmic and stationary phases at a concentration of 1000 µg/ml (100%). L. tropica isolates showed agglutination with the lectin UEA-1 in both logarithmic and stationary phases (62.5% and 87.5%). L. major and L. tropica showed 75% agglutination with lectin Jacalin in both logarithmic and stationary phases. L. tropica isolates showed 25% agglutination with the lectin WGA in the logarithmic phase. L. infantum, L. major and L. tropica isolates showed 25, 12.5 and 37.5% agglutination in the stationary phase, however, did not show agglutination in logarithmic phases. L. major isolates showed 12.5% agglutination with the lectin PHA in the stationary phase, however, were incapable of agglutination with the L. tropica and L. infantum in both logarithmic and stationary phases.
Conclusion: Despite the fact, that JCA and I-UEA lectins were not able to completely separate L. infantum, L. major and L. tropica. WGA lectin and PHA lectin can help in separating the species of Leishmania parasites.
2. Murray HW, Berman JD, Davies CR, et al. Advances in leishmaniasis. The Lancet. 2005;366(9496):1561-77.
3. Georgiadou SP, Makaritsis KP, Dalekos GN. Leishmaniasis revisited: current aspects on epidemiology, diagnosis and treatment. J Transl Int Med. 2015;3(2):43-50.
4. Shirian S, Oryan A, Hatam GR, et al. Three Leishmania/L. species–L. infantum, L. major, L. tropica–as causative agents of mucosal leishmaniasis in Iran. Pathog Glob Health. 2013;107(5):267-72.
5. Machado M, Pires P, Dinis A, et al. Monoterpenic aldehydes as potential anti-Leishmania agents: activity of Cymbopogon citratus and citral on L. infantum, L. tropica and L. major. Exp Parasitol. 2012;130(3):223-31.
6. Allahverdiyev AM, Abamor ES, Bagirova M, et al. Investigation of antileishmanial activities of Tio2@ Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, In vitro. Exp Parasitol. 2013;135(1):55-63.
7. Pourmohammadi B, Motazedian M, Hatam G, et al. Comparison of three methods for diagnosis of cutaneous leishmaniasis. Iran J Parasitol. 2010;5(4):1-8.
8. Saridomichelakis MN, Mylonakis ME, Leontides LS, et al. Evaluation of lymph node and bone marrow cytology in the diagnosis of canine leishmaniasis (Leishmania infantum) in symptomatic and asymptomatic dogs. Am J Trop Med Hyg. 2005;73(1):82-6.
9. Srivastava P, Dayama A, Mehrotra S, Sundar S. Diagnosis of visceral leishmaniasis. Trans R Soc Trop Med Hyg. 2011;105(1):1-6.
10. Pedras MJ, de Gouvêa Viana L, de Oliveira EJ, Rabello A. Comparative evaluation of direct agglutination test, rK39 and soluble antigen ELISA and IFAT for the diagnosis of visceral leishmaniasis. Trans R Soc Trop Med Hyg. 2008;102(2):172-8.
11. Porrozzi R, da Costa MVS, Teva A, et al. Comparative evaluation of enzyme-linked immunosorbent assays based on crude and recombinant leishmanial antigens for serodiagnosis of symptomatic and asymptomatic Leishmania infantum visceral infections in dogs. Clin Vaccine Immunol. 2007;14(5):544-8.
12. Marfurt J, Nasereddin A, Niederwieser I, et al. Identification and differentiation of Leishmania species in clinical samples by PCR amplification of the miniexon sequence and subsequent restriction fragment length polymorphism analysis. J Clin Microbiol. 2003;41(7):3147-53.
13. Lasky LA. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science (New York, NY). 1992;258(5084):964-9.
14. Ambrosi M, Cameron NR, Davis BG. Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem. 2005;3(9):1593-608.
15. Sharon N, Lis H. Lectins as cell recognition molecules. Science (New York, NY). 1989;246(4927):227-34.
16. Andrade A, Saraiva E. Lectin-binding properties of different Leishmania species. Parasitol Res. 1999;85(7):576-81.
17. Alemayehu B, Alemayehu M. Leishmaniasis: a review on parasite, vector and reservoir host. Health Sci J. 2017;11(4):1.
18. Lévêque MF, Lachaud L, Simon L, Battery E, Marty P, Pomares C. Place of serology in the diagnosis of zoonotic leishmaniases with a focus on visceral leishmaniasis due to Leishmania infantum. Front Cell Infect Microbiol. 2020;10:67.
19. Sundar S, Chakravarty J. Leishmaniasis: an update of current pharmacotherapy. Expert Opin Pharmacother. 2013;14(1):53-63.
20. Mouttaki T, Morales-Yuste M, Merino-Espinosa G, et al. Molecular diagnosis of cutaneous leishmaniasis and identification of the causative Leishmania species in Morocco by using three PCR-based assays. Parasite Vectors. 2014; 7:420.
21. Kato H, Uezato H, Katakura K, et al. Detection and identification of Leishmania species within naturally infected sand flies in the Andean areas of Ecuador by a polymerase chain reaction. Am J Trop Med Hyg. 2005;72(1):87-93.
22. Podinovskaia M, Descoteaux A. Leishmania and the macrophage: a multifaceted interaction. Future Microbiol. 2015;10(1):111-29.
23. Forestier CL, Gao Q, Boons GJ. Leishmania lipophosphoglycan: how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate?. Front Cell Infect Microbiol. 2015;4:193.
24. Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology. 2004;14(11):53R-62R.
25. Inbar M, Sachs L. Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc Natl Acad Sci. 1969;63(4):1418-25.
26. Kobiler D, Mirelman D. Lectin activity in Entamoeba histolytica trophozoites. Infect Immunol. 1980;29(1):221-5.
27. Jungery M, Pasvol G, Newbold C, Weatherall D. A lectin-like receptor is involved in invasion of erythrocytes by Plasmodium falciparum. Proc Natl Acad Sci. 1983;80(4):1018-22.
28. Petry K, Schottelius J, Dollet M. Differentiation of Phytomonas sp. and lower trypanosomatids (Herpetomonas, Crithidia) by agglutination tests with lectins. Parasitol Res. 1987;74(1):1-4.
29. Bandyopadhyay P, Ghosh DK, De A, et al. Metacyclogenesis of Leishmania spp: species-specific In vitro transformation, complement resistance, and cell surface carbohydrate and protein profiles. J Parasitol. 1991:411-6.
30. Wilson ME, Pearson RD. Stage-specific variations in lectin binding to Leishmania donovani. Infect Immunol. 1984;46(1):128-34.
31. Dawidowicz K, Hernandez A, Infante R, Convit J. The surface membrane of Leishmania. I. The effects of lectins on different stages of Leishmania braziliensis. J Parasitol. 1975:950-3.
32. Greenblatt C, Meline D, Slutzky G, et al. Surface reaction of Leishmania: III. Ulex europaeus II lectin affinity for excreted factor (EF) serotype A strains. Ann Trop Med Parasitol. 1984;78(2):99-107.
33. Amin AMA. Growth Rate and Lectin mediated agglutination tests in three Leishmania major strains. J King Abdulaziz University Med Sci. 1998;6:55-62.
Files | ||
Issue | Vol 18 No 4 (2023) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijpa.v18i4.14245 | |
Keywords | ||
Leishmania Species identification Lectin Agglutination In vitro |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |