Original Article

In Silico Vaccine Design and Expression of the Multi-Component Protein Candidate against the Toxoplasma gondii Parasite from MIC13, GRA1, and SAG1 Antigens

Abstract

Background: We aimed to design a B and T cell recombinant protein vaccine of Toxoplasma gondii with in silico approach. MIC13 plays an important role in spreading the parasite in the host body. GRA1 causes the persistence of the parasite in the parasitophorous vacuole. SAG1 plays a role in host-cell adhesion and cell invasion.

Methods: Amino acid positions 73-272 from MIC13, 71-190 from GRA1, and 101-300 from SAG1 were selected and joined with linker A(EAAAK)A. The structures, antigenicity, allergenicity, physicochemical properties, as well as codon optimization and mRNA structure of this recombinant protein called MGS1, were predicted using bioinformatics servers. The designed structure was synthesized and then cloned in pET28a (+) plasmid and transformed into Escherichia coli BL21.

Results: The number of amino acids in this antigen was 555, and its antigenicity was estimated to be 0.6340. SDS-PAGE and Western blotting confirmed gene expression and successful production of the protein with a molecular weight of 59.56kDa. This protein will be used in our future studies as an anti-Toxoplasma vaccine candidate in animal models

Conclusion: In silico methods are efficient for understanding information about proteins, selecting immunogenic epitopes, and finally producing recombinant proteins, as well as reducing the time and cost of vaccine design.

1. Lim SS-Y, Othman RY. Recent advances in Toxoplasma gondii immunotherapeutics. Korean J Parasitol.2014; 52(6):581-93.
2. Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev.1998; 11(2):267-99.
3. Anvari D, Sharif M, Sarvi S, et al. Seroprevalence of Toxoplasma gondii infection in cancer patients: A systematic review and meta-analysis. Microb Pathog.2019; 129:30-42.
4. Amouei A, Moosazadeh M, Nayeri Chegeni T, et al. Evolutionary puzzle of Toxoplasma gondii with suicidal ideation and suicide attempts: An updated systematic review and meta-analysis. Transbound Emerg Dis. 2020; 1-14.
5. Hosseininejad Z, Sharif M, Sarvi S, et al. Toxoplasmosis seroprevalence in rheumatoid arthritis patients: A systematic review and meta-analysis. PLoS Negl Trop Dis.2018; 12(6):e0006545.
6. Gedik Y, İz SG, Can H, et al. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model. Trials in Vaccinology.2016;5:15-23.
7. Konstantinovic N, Guegan H, Stäjner T, et al. Treatment of toxoplasmosis: Current options and future perspectives. Food Waterborne Parasitol.2019;15:e00036.
8. Foroutan M, Ghaffarifar F, Sharifi Z, et al. Bioinformatics analysis of ROP8 protein to improve vaccine design against Toxoplasma gondii. Infect Genet Evol.2018; 62:193-204.
9. Wang Y, Wang M, Wang G, et al. Increased survival time in mice vaccinated with a branched lysine multiple antigenic peptide containing B and T-cell epitopes from T. gondii antigens. Vaccine. 2011; 29(47):8619-23.
10. Skwarczynski M, Toth I. Peptide-based synthetic vaccines. Chem Sci.2016;7)2):842-54.
11. Zhang NZ, Chen J, Wang M, et al. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Rev Vaccines.2013; 12(11):1287-99.
12. Wang Y, Wang G, Cai J, et al. Review on the identification and role of Toxoplasma gondii antigenic epitopes. Parasitol Res.2016; 115(2):459-68.
13. Ghaffari AD, Dalimi A, Ghaffarifar F, et al. Structural predication and antigenic analysis of ROP16 protein utilizing immunoinformatics methods in order to identification of a vaccine against Toxoplasma gondii: An in silico approach. Microb Pathog.2020; 142:104079.
14. Yuan ZG, Ren D, Zhou DH, et al. Evaluation of protective effect of pVAX-TgMIC13 plasmid against acute and chronic Toxoplasma gondii infection in a murine model. Vaccine.2013; 31(31):3135-9.
15. Wu XN, Lin J, Lin X, et al. Multicomponent DNA vaccine-encoding Toxoplasma gondii GRA1 and SAG1 primes: anti-Toxoplasma immune response in mice. Parasitol Res. 2012; 111(5):2001-9.
16. Supply P, Sutton P, Coughlan SN, et al. Immunogenicity of recombinant BCG producing the GRA1 antigen from Toxoplasma gondii. Vaccine.1999; 17(7-8):705-714.
17. Nam HW. GRA Proteins of Toxoplasma gondii: Maintenance of Host-Parasite Interactions across the Parasitophorous Vacuolar Membrane. Korean J Parasitol.2009; 47Suppl (Suppl):S29-S37.
18. Radke JR, Gubbels MJ, Jerome ME, et al. Identification of a sporozoite-specific member of the Toxoplasma SAG superfamily via genetic complementation. Mol Microbiol.2004; 52(1):93-105.
19. Wang Y, Yin H. Research progress on surface antigen 1 (SAG1) of Toxoplasma gondii. Parasit Vectors.2014; 7:180.
20. Dodangeh S, Fasihi-Ramandi M, Daryani A, et al. In silico analysis and expression of a novel chimeric antigen as a vaccine candidate against Toxoplasma gondii. Microb Pathog.2019; 132:275-81.
21. He Y, Xiang Z. Databases and in silico tools for vaccine design. In: Kortagere S, editor. In Silico Models for Drug Discovery. Humana Totowa, NJ. 2013; 993:115-27.
22. María RR, Arturo CJ, Alicia JA, et al. The Impact of Bioinformatics on Vaccine Design and Development. In: Afrin F, editors. Vaccines. London: IntechOpen.2017; 123-45.
23. Zhou Z, Lopez HIAO, Pérez GE, et al. Toxoplasmosis and the Heart. Curr Probl Cardiol.2021; 46(3):100741.
24. Alibakhshi A, Bandehpour M, Nafariyeh M, et al. In silico Analysis of Immunologic Regions of Surface Antigens (Sags) of Toxoplasma gondii. Novelty in Biomedicine.2017; 5(3):109-18.
25. Pourseif MM, Yousefpour M, Aminianfar M, et al. A multi-method and structure-based in silico vaccine designing against Echinococcus granulosus through investigating enolase protein. Bioimpacts.2019; 9(3):131-144.
26. Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res.2015; 43(W1):W174-81.
27. Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis.2009; 30 Suppl 1:S162-S173.
28. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumor antigens and subunit vaccines. BMC Bioinformatics.2007;8:4.
29. Saha S, Raghava GP. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res.2006; 34(Web Server issue):W202-W209.
30. Mauro VP. Codon Optimization in the Production of Recombinant Biotherapeutics: Potential Risks and Considerations. BioDrugs.2018; 32(1):69-81.
31. Li W, Joshi MD, Singhania S, et al. Peptide Vaccine: Progress and Challenges. Vaccines (Basel).2014; 2(3):515-536.
32. Kazi A, Chuah C, Majeed ABA, et al. Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design. Pathog Glob Health.2018; 112(3):123-131.
33. Dana H, Mahmoodi Chalbatani G, Gharagouzloo E, et al. In silico Analysis, Molecular Docking, Molecular Dynamic, Cloning, Expression and Purification of Chimeric Protein in Colorectal Cancer Treatment. Drug Des Devel Ther.2020;14:539.
34. Li XW, Zhang N, Li ZL, et al. Epitope vaccine design for Toxoplasma gondii based on a genome-wide database of membrane proteins. Parasit Vectors.2022; 15:364.
35. Kang H, Remington JS, Suzuki Y. Decreased resistance of B cell-deficient mice to infection with Toxoplasma gondii despite unimpaired expression of IFN-gamma, TNF-alpha, and inducible nitric oxide synthase. J Immunol.2000; 164(5):2629-2634.
36. Patel DS, Menon D, Patel D. Linkers: a synergistic way for chimeric proteins. Authorea.2020. DOI: 10.22541/au.160199719.94542802/v1
37. Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev.2013; 65(10):1357-69.
38. Imani-Fooladi AA, Yousefi F, Mousavi SF, et al. In Silico Design and Analysis of TGFαL3-SEB Fusion Protein as "a New Antitumor Agent" Candidate by Ligand-Targeted Superantigens Technique. Iran J Cancer Prev.2014; 7(3):152-164.
39. Shaddel M, Ebrahimi M, Tabandeh MR. Bioinformatics analysis of single and multi-hybrid epitopes of GRA-1, GRA-4, GRA-6 and GRA-7 proteins to improve DNA vaccine design against Toxoplasma gondii. J Parasit Dis.2018; 42(2):269-276.
40. Jin X, Guo L, Jiang Q, et al. Prediction of protein secondary structure based on an improved channel attention and multiscale convolution module. Front Bioeng Biotechnol. 2022; 10:901018.
41. Puigbò P, G Bravo I, Garcia-Vallvé S. E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics.2008; 9:65.
Files
IssueVol 18 No 3 (2023) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijpa.v18i3.13753
Keywords
Toxoplasma gondii In silico Vaccine

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Hosseininejad Z, Daryani A, Fasihi-Ramandi M, Asgarian-Omran H, Valadan R, Nayeri T, Dodangeh S, Sarvi S. In Silico Vaccine Design and Expression of the Multi-Component Protein Candidate against the Toxoplasma gondii Parasite from MIC13, GRA1, and SAG1 Antigens. Iran J Parasitol. 2023;18(3):301-312.