Original Article

Low Allelic Variation of Plasmodium falciparum msp-1 and msp-2 among Gold Miners in Central Kalimantan Province, Indonesia


Background: We aimed to find out the allelic variation of Pfmsp-1 and Pfmsp-2 among gold miners in Central Kalimantan Province, Indonesia using parasites’ DNA isolated from archived RDT and GSBS

Methods: This study was done using the samples collected between 2017-2020 from health centers in Subdistrict of Mihing Raya, Danau Rawah, and Bukit Hindu as well as Kapuas District Health Laboratory in Central Kalimantan Province, Surabaya, Indonesia. Parasites DNA were isolated from RDT cartridges and GSBS of local and migrant gold miners. Species of Plasmodium were confirmed by single step PCR. The allelic variation of Pfmsp-1 (K1, MAD20, RO33) and Pfmsp-2 (3D7, FC27) were analyzed by nested PCR.

Results: Pfmsp-1 gene was found in only two (22.22%) out of 9 local samples, and 3 (27.27%) out of 11 migrant samples were found positive for K1 (150 bp) as well as MAD 20 (190 bp) allelic families. Pfmsp-2 gene were found in each one sample of 550 bp fragment in local (11.11%) and migrant samples (9.09%) for 3D7, and 2 samples of 300 bp fragments in local (22.22%) and 3 samples of 300 bp in migrant samples (27.27%). No difference in size and number of infections between both populations. The RO33 allelic family Alhamdulillah was not found in any sample.

Conclusion: Low allelic variation of Pfmsp-1 and Pfmsp-2 genes with monogenotype indicated the low intensity of malaria transmission among gold miners in the studied areas. Further, the transmission may occur locally in the mining sites.

1. Tusting LS, Rek J, Arinaitwe E, et al. Why is malaria associated with poverty? Find-ings from a cohort study in rural Uganda. Infect Dis Poverty. 2016; 5 (78).
2. Castellanos A, Chaparro-Narváez P, Morales-Plaza CD, et al. Malaria in gold-mining areas in Colombia. Mem Inst Oswaldo Cruz. 2016;111(1):59–66.
3. McMahon G, Subdibjo ER, Aden J, Bouzaher A, Dore G, Kunanayagam R. Mining and the environment in Indonesia: long-term trends and repercussions of the Asian economic crisis. EEASES Discuss Pap Ser. 2000; 21438: 1–46.
4. Kanakath P. Illegal gold mining operations in Kalimantan threaten lives and the envi-ronment. Indonesia Expart. 2015. Cited January 15, 2022 from https://indonesiaexpat.id/business-property/illegal-gold-mining-operations-in-kalimantan-threaten-lives-and-the-environment/
5. Douine M, Sanna A, Hiwat H, et al. Inves-tigation of a possible malaria epidemic in an illegal gold mine in French Guiana: an original approach in the remote Amazoni-an Forest. Malar J. 2019; 18 (1):91.
6. Olapeju B, Adams C, Simpson J, et al. Ma-laria Care-Seeking and Treatment Ideation among Gold Miners in Guyana. PLoS One. 2020; 15(12): e0244454.
7. Endeshaw T, Gebre T, Ngondi J, et al. Evaluation of light microscopy and rapid diagnostic test for the detection of malaria under operational field conditions: a household survey in Ethiopia. Malar J. 2008, 7118. 2008; 7(118).
8. Bariyah K, Utomo B, Sulistyawati S, et al. Different Types of Anopheles Breeding Place in Low and High Malaria Case Are-as. J Kesehat Masy. 2018;14(2):178–85.
9. Lestarisa T, Arwati H, Dachlan Y, Keman S, Safruddin D. The use of archived Giemsa-stained blood smears and RDT for PCR-based genotyping of Plasmodium vivax merozoite surface protein-1 in Cen-tral Kalimantan Province, Indonesia. Afr J Infect Dis. 2022; 16(1):13–20.
10. Indriyati L, Rosanji A, Juhairiyah J, Yuana WT, Haryati E. Habitat Perkembangbiakan Spesifik Anopheles sp. di Tambang Emas Kura-Kura Banian (Perubahan Perilaku Anopheles sp.). Balaba J Litbang Pengendali Penyakit Bersumber Binatang Banjarnega-ra. 2018; (October):121–34.
11. Rahayu N, Suryatinah Y, Kusumaningtyas H. Discovery of Malaria Cases on Forest Workers in Public Health Center, Teluk Kepayang, Tanah Bumbu, South Kaliman-tan. BIO Web Conf. 2020; 20(01008).
12. Holder AA, Blackman MJ. What is the Function of MSP-I on the Malaria Mero-zoite? Porasltol Today. 1994; 10 (5):182–4.
13. Aubouy A, Migot-Nabias F, Deloron P. Polymorphism in Two Merozoite Surface Proteins of Plasmodium falciparum Isolates from Gabon. Malar J. 2003; 2(12).
14. Woehlbier U, Epp C, Kauth CW, et al. Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum. Infect Immun. 2006; 74(2):1313–1322.
15. Contamin H, Fandeur T, Rogier C, et al. Different Genetic Characteristics of Plas-modium falciparum Isolates Collected during Successive Clinical Malaria Episodes in Senegalese Children. Am J Trop Med Hyg. 1996; 54(6):632–43.
16. Lê HG, Kang JM, Jun H, et al. Changing pattern of the genetic diversities of Plasmo-dium falciparum merozoite surface protein-1 and merozoite surface protein-2 in Myan-mar isolates. Malar J. 2019; 18(1): 241.
17. Zhang C, Zhou H, Liu Q, Yang YM. Ge-netic polymorphism of merozoite surface proteins 1 and 2 of Plasmodium falciparum in the China–Myanmar border region. Malar J. 2019; 18:367.
18. Hussain HH, Sohail M, Kumar R, Branch OH, Adak T, Raziuddin M. Genetic diver-sity in merozoite surface protein-1 and 2 among Plasmodium falciparum isolates from malarious districts of tribal dominant state of Jharkhand, India. Ann Trop Med Para-sitol. 2011; 105(8):579–92.
19. Mobegi VA, Loua KM, Ahouidi AD, et al. Population genetic structure of Plasmodium falciparum across a region of diverse ende-micity in West Africa. Malar J. 2012; 11:223.
20. Collins WJ, Greenhouse B, Rosenthal PJ, Dorsey G. The Use of Genotyping in An-timalarial Clinical Trials: A Systematic Re-view of Published Studies from 1995-2005. Malar J. 2006; 5:122.
21. Soe T, Wu Y, Tun M, et al. Genetic diver-sity of Plasmodium falciparum populations in southeast and western Myanmar. Parasit Vectors. 2017; 10(1):322.
22. WHO. Diagnostic testing. 1990. Cited on February 20, 2020 from: https://www.who.int/teams/global-malaria-programme/case-management/diagnosis
23. Shavey CA, Morado J. DNA extraction from archived Giemsa-stained blood smears using polymerase chain reaction to detect host and parasitic DNA. J Histo-technol. 2012; 35(3).
24. Nguyen T, Mombo, BN Lalremruata A, et al. DNA recovery from archived RDTs for genetic characterization of Plasmodium falciparum in a routine setting in Lambaréné, Gabon. Malar J. 2019; 18 (1):336.
25. Sada C, Alas Y, Anshari M. Indigenous people of Borneo (Dayak): Development, social cultural perspective and its challeng-es. Cogent Arts &Humanities., 2019; 6(1):1665936.
26. WWARN. Preparation of Rapid Diagnos-tic Tests (RDTs) for DNA extraction. 11. 2014; 1–7. Cited on April 20, 2020 from: http://www.wwarn.org/sites/default/files/MOL06_RDTsForDNAExtraction.pdf
27. Patsoula E, Spanakos G, Sofianatou D, Parara M, Vakalis NC. A single-step, PCR-based method for the detection and dif-ferentiation of Plasmodium vivax and P. falci-parum. Ann Trop Med Parasitol. 2003; 97(1):15–21.
28. Arwati H, Yotopranoto S, Rohmah EA, Syafruddin D. Submicroscopic malaria cases play role in local transmission in Trenggalek District, East Java Province, Indonesia. Malar J. 2018; 17(1):2.
29. Nag S, Ursing J, Rodrigues A, et al. Proof of concept: used malaria rapid diagnostic tests applied for parallel sequencing for surveillance of molecular markers of anti-malarial resistance in Bissau, Guinea-Bissau during 2014–2017. Malar J. 2019; 18 (1):252.
30. Su X, Zhang C, Joy D. Host-Malaria Para-site Interactions and Impacts on Mutual Evolution. Front Cell Infect Microbiol. 2020; 10:587933.
31. Karunaweera N, Ferreira M, Munasinghe A, et al. Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax. Gene. 2008; 410(1):105-112.
32. Imwong M, Nair S, Pukrittayakamee S, et al. Contrasting genetic structure in Plasmo-dium vivax populations from Asia and South America. Int J Parasitol. 2007; 37:1013-102.
33. Lê HG, Thái TL, Kang JM, et al. Genetic polymorphism of merozoite surface pro-tein-1 and merozoite surface protein-2 in Plasmodium falciparum field isolates from Myanmar. Malar J. 2010; 9(1):131.
34. Sugihantono A. Bebas malaria prestasi bangsa. Media Indonesia. 2019. Cited on July 15, 2020 from: https://mediaindonesia.com/read/detail/235564-bebas-malaria-prestasi-bangsa
35. Trisnawati S. Tiga Kabupaten di Kalteng Belum Bebas Malaria. 2020. Cited on No-vember 20, 2021 from: https://rri.co.id/palangkaraya/tanggap-bencana/933034/tiga-kabupaten-di-kalteng-belum-bebas-malaria
36. Triajayanti A, Utami N, Kurniawan B, Su-wandi J. Identification of Plasmodium falcipa-rum Merozoit Surface Protein-1 (Pfmsp-1) Gene from malaria patients In Hanura Ar-ea, Lampung, Indonesia. Bioscientia Me-dicina. 2019; 3(4):1–9.
37. Tanjung R, Sarungu Y, Imbiri M, et al. Genetic Diversity in Merozoite Surface Protein.1 of Plasmodium falciparum in High-lands: Wamena Papua Indonesia. Am J In-fect Dis. 2018; 14(4):106–9.
38. Atroosh W, Al-Mekhlafi H, Mahdy M, Saif-Ali R, Al-Mekhlafi A, Surin J. Genetic diversity of Plasmodium falciparum isolates from Pahang, Malaysia based on MSP-1 and MSP-2 genes. Parasites Vectors. 2011; 4:233.
39. Mze N, Bogreau H, Diedhiou C, et al. Ge-netic diversity of Plasmodium falciparum in Grande Comore Island. Malar J. 2020; 19 (1):320.
40. Mawili-Mboumba D, Mbuyi M, M’bondoukwe N, Bouyou-Akotet M. Plasmodium falciparum Allelic Diversity: A Comparison of DNA Extraction from Isolates Collected on Rapid Diagnostic Tests (RDTs) and Filter Paper. Iran J Para-sitol. 2021; 16(4):555–9.
41. Khan S, Ali R, Khan S, et al. Genetic Di-versity of Polymorphic Marker Merozoite Surface Protein 1 (Msp-1) and 2 (Msp-2) Genes of Plasmodium falciparum isolates from Malaria Endemic Region of Pakistan. Front Genet. 2021;12: 751552.
IssueVol 18 No 1 (2023) QRcode
SectionOriginal Article(s)
Giemsa Blood smears Allelic variation Malaria Indonesia

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Arwati H, Lestarisa T, Augustina I, Rohmah E, Subekti S, Keman S, Dachlan Y. Low Allelic Variation of Plasmodium falciparum msp-1 and msp-2 among Gold Miners in Central Kalimantan Province, Indonesia. Iran J Parasitol. 2023;18(1):10-18.