Review Article

Plant Bioactive Ingredients in Delivery Systems and Nanocarriers for the Treatment of Leishmaniasis: An Evidence-Based Review

Abstract

Background: This study was designed considering the challenges of leishmaniasis treatment and the benefits of carriers of drug delivery systems to review plant bioactive ingredients in delivery systems and nanocarriers for the treatment of leishmaniasis.
Methods: The methodology of this review investigation followed the 06-PRISMA recommendations. The searches were carried out up to January 30, 2022, in the central English databases SCOPUS, WEB OF SCIENCE, EMBASE, PUBMED, and GOOGLE SCHOLAR using the search terms “ç”, “leishmaniasis”, “herbal medicines”, “drug delivery”, “nanocarriers”, “herbal compounds”, and “secondary metabolites”.
Results: Out of 5731 articles, 19 publications, including 12 in vivo (63.15%), 3 in vitro (15.8%), and 4 in vitro/ in vivo (21.1%) up to 2022, fulfilled the criteria presence for argument in the current systematic study. Plant bioactive ingredients were curcumin, betulinic acid, artemisinin, 4-nitrobenzaldehyde thiosemicarbazone, andrographolide, pentalinonsterol, ursolic acid, amarogentin, carvacrol, 14-deoxy-11-oxo-andrographolide, quercetin, beta-lapachone, cedrol, 2ˊ,6ˊ-dihydroxy-4ˊ-methoxychalcone, and oleanolic acid.
Conclusion: The high potential of plant bioactive ingredients in delivery systems due to the load on the nanocarrier for the treatment of leishmaniasis through some main mechanisms of action, e.g. changes in the fluidity and the structure of the cell wall, creation of reactive oxygen species (ROS) and mitochondrial dysfunction, inhibition of DNA topoisomerase I enzyme, minimal cytotoxicity, stimulation of cell cycle disruption, stimulation of apoptosis, enhancement of the immune system. However, further investigations, especially in the clinical setting, are required to confirm these findings.

1. Ibarra-Meneses AV, Corbeil A, Wagner V, Onwuchekwa C, Fernandez-Prada C. Identification of asymptomatic Leishmania infections: a scoping review. Parasites Vec-tors. 2022;15(1):5.
2. Mann S, Frasca K, Scherrer S, Henao-Martínez AF, Newman S, Ramanan P, Sua-rez JA. A Review of leishmaniasis: current knowledge and future directions. Curr Trop Med Rep. 2021;8(2):121-32.
3. Alanazi AD, Alyousif MS, Saifi MA, Alana-zi IO. Epidemiological studies on cutane-ous leishmaniasis in Ad-Dawadimi District, Saudi Arabia. Trop J Pharm Res. 2016;15(12):2709-12.
4. AlMohammed HI, Khudair Khalaf A, E Albalawi A, et al. Chitosan-Based Nano-materials as Valuable Sources of Anti-Leishmanial Agents: A Systematic Review. Nanomaterials. 2021;11(3):689.
5. Nafari A, Cheraghipour K, Sepahvand M, Shahrokhi G, Gabal E, Mahmoudvand H. Nanoparticles: New agents toward treat-ment of leishmaniasis. Parasite Epidemiol Control. 2020;10:e00156.
6. Albalawi AE, Alanazi AD, Sharifi I, Ezzat-khah F. A systematic review of curcumin and its derivatives as valuable sources of antileishmanial agents. Acta Parasitol. 2021;66(3):797-811.
7. Albalawi AE, Khalaf AK, Alyousif MS, et al. Fe3O4@ piroctone olamine magnetic nanoparticles: Synthesize and therapeutic potential in cutaneous leishmaniasis. Bio-med Pharmacother. 2021;139:111566.
8. Albalawi AE, Abdel-Shafy S, Khudair Khalaf A, et al. Therapeutic potential of green synthesized copper nanoparticles alone or combined with meglumine anti-moniate (glucantime®) in cutaneous leish-maniasis. Nanomaterials. 2021;31;11(4):891.
9. Cheraghipour K, Ezatpour B, Masoori L, et al. Anti-Candida activity of curcumin: A systematic review. Curr Drug Discov Technol. 2021;18(3):379-90.
10. Cheraghipour K, Marzban A, Ezatpour B, Khanizadeh S, Koshki J. Antiparasitic properties of curcumin: A review. AIMS Agric Food. 2018;3(4):561-78
11. Shakib P, Ali AS, Javanmard E, et al, Cheraghipour K. Anti-trichophyton effects of curcumin: A systematic review. Anti-Infect Agents. 2021;19(4):29-34.
12. Zhai K, Brockmüller A, Kubatka P, Shakibaei M, Büsselberg D. Curcumin’s beneficial effects on neuroblastoma: Mechanisms, challenges, and potential so-lutions. Biomolecules. 2020;10(11):1469.
13. Fattahi Bafghi A, Haghirosadat BF, Yazdi-an F, et al. A novel delivery of curcumin by the efficient nanoliposomal approach against Leishmania major. Prep Biochem Biotechnol. 2021;51(10):990-7.
14. Tiwari B, Pahuja R, Kumar P, Rath SK, Gupta KC, Goyal N. Nanotized curcumin and miltefosine, a potential combination for treatment of experimental visceral leishmaniasis. Antimicrob Agents Chemother. 2017;61(3):e01169-16.
15. Chaubey P, Mishra B, Mudavath SL, et al, Monteiro M. Mannose-conjugated curcu-min-chitosan nanoparticles: efficacy and toxicity assessments against Leishmania donovani. Int J Biol Macromol. 2018;111:109-20.
16. Yogeeswari P, Sriram D. Betulinic acid and its derivatives: a review on their biological properties. Current Med Chem. 2005;12(6):657-66.
17. Moghaddam MG, Ahmad FB, Samzadeh-Kermani A. Biological activity of betulinic acid: a review. Pharm Pharmacol. 2012;3:119-123
18. Halder A, Shukla D, Das S, Roy P, Mukherjee A, Saha B. Lactoferrin-modified Betulinic Acid-loaded PLGA na-noparticles are strong anti-leishmanials. Cytokine. 2018;110:412-5.
19. Roy Chowdhury A, Mandal S, Goswami A, et al. Dihydrobetulinic acid induces apop-tosis in Leishmania donovani by targeting DNA topoisomerase I and II: implications in antileishmanial therapy. Mol Med. 2003;9(1):26-36.
20. Sousa MC, Varandas R, Santos RC, San-tos-Rosa M, Alves V, Salvador JA. An-tileishmanial activity of semisynthetic lu-pane triterpenoids betulin and betulinic ac-id derivatives: synergistic effects with miltefosine. PloS One. 2014;9(3):e89939.
21. Zadeh Mehrizi T, Shafiee Ardestani M, Haji Molla Hoseini M, Khamesipour A, Mosaffa N, Ramezani A. Novel nanosized chitosan-betulinic acid against resistant Leishmania major and first clinical observa-tion of such parasite in kidney. Sci Rep. 2018;8(1):1-9.
22. Zadeh Mehrizi T, Khamesipour A, Ar-destani MS, et al. Comparative analysis be-tween four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus. Int J Nanomedicine. 2019;14:7593.
23. Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasi-tol. 2002;32(13):1655-60.
24. Ghaffarifar F, Heydari FE, Dalimi A, Has-san ZM, Delavari M, Mikaeiloo H. Evalua-tion of apoptotic and antileishmanial ac-tivities of Artemisinin on promastigotes and BALB/C mice infected with Leishma-nia major. Iran J Parasitol. 2015;10(2):258.
25. Sen R, Bandyopadhyay S, Dutta A, Mandal G, Ganguly S, Saha P, Chatterjee M. Arte-misinin triggers induction of cell-cycle ar-rest and apoptosis in Leishmania donovani promastigotes. J Med Microbiol. 2007;56(9):1213-8.
26. Want MY, Islammudin M, Chouhan G, Ozbak HA, Hemeg HA, Chattopadhyay AP, Afrin F. Nanoliposomal artemisinin for the treatment of murine visceral leish-maniasis. Int J Nanomedicine. 2017;12:2189.
27. Want MY, Islamuddin M, Chouhan G, Dasgupta AK, Chattopadhyay AP, Afrin F. A new approach for the delivery of arte-misinin: formulation, characterization, and ex-vivo antileishmanial studies. J Colloid Interface Sci. 2014;432:258-69.
28. Siddiqui EJ, Azad I, Khan AR, Khan T. Thiosemicarbazone complexes as versatile medicinal chemistry agents: a review. J Drug Deliv Ther. 2019;9(3):689-703.
29. Britta EA, Scariot DB, Falzirolli H, Ueda-Nakamura T, Silva CC, Borsali R, Naka-mura CV. Cell death and ultrastructural al-terations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thi-osemicarbazone derived from S-limonene. BMC Microbiol. 2014;14(1):1-2.
30. Kumar G, Singh D, Tali JA, Dheer D, Shankar R. Andrographolide: Chemical modification and its effect on biological activities. Bioorg Chem. 2020;95:103511.
31. Das S, Halder A, Mandal S, Mazumder MA, Bera T, Mukherjee A, Roy P. Andro-grapholide engineered gold nanoparticle to overcome drug resistant visceral leishman-iasis. Artif Cells Nanomed Biotechnol. 2018;46(sup1):751-62.
32. Roy P, Das S, Bera T, Mondol S, Mukher-jee A. Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int J Nanomedicine. 2010;5:1113.
33. Sinha J, Mukhopadhyay S, Das N, Basu MK. Targeting of liposomal andro-grapholide to L. donovani-infected macro-phages in vivo. Drug Delivery. 2000;7(4):209-13.
34. Oghumu S, Varikuti S, Saljoughian N, et al. Pentalinonsterol, a constituent of pentali-non andrieuxii, possesses potent im-munomodulatory activity and primes t cell immune responses. J Nat Prod. 2017;80(9):2515-23.
35. Gupta G, Peine KJ, Abdelhamid D, et al. A novel sterol isolated from a plant used by Mayan traditional healers is effective in treatment of visceral leishmaniasis caused by Leishmania donovani. ACS Infect Dis. 2015;1(10):497-506.
36. Seo DY, Lee SR, Heo JW, et al. Ursolic acid in health and disease. Korean J Phys-iol Pharmacol. 2018;22(3):235-48.
37. Jesus JA, Sousa IM, da Silva TN, et al. Pre-clinical assessment of ursolic acid loaded into nanostructured lipid carriers in exper-imental visceral leishmaniasis. Pharmaceu-tics. 2021;13(6):908.
38. Keil M, Härtle B, Guillaume A, Psiorz M. Production of amarogentin in root cultures of Swertia chirata. Planta Med. 2000;66(05):452-7.
39. Medda S, Mukhopadhyay S, Basu MK. Evaluation of the in-vivo activity and tox-icity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms. J Antimicrob Chemother. 1999;44(6):791-4.
40. Cheraghipour K, Masoori L, Zivdari M, et al. A systematic appraisal of the use of car-vacrol-rich plants to treat hydatid cysts. J Parasit Dis.. 2022;16:1-7.
41. Suntres ZE, Coccimiglio J, Alipour M. The bioactivity and toxicological actions of car-vacrol. Crit Rev Food Sci Nut. 2015;55(3):304-18.
42. Galvão JG, Santos RL, Silva AR, et al. Carvacrol loaded nanostructured lipid car-riers as a promising parenteral formulation for leishmaniasis treatment. Eur J Pharm Sci. 2020;150:105335.
43. Rashid PT, Ahmed M, Rahaman MM, Muhit MA. 14-Deoxyandrographolide iso-lated from Andrographis paniculata (Burm. f) Nees growing in Bangladesh and its anti-microbial properties. Dhaka Univ J Pharm Sci. 2018;17(2):265-7.
44. Lala S, Nandy AK, Mahato SB, Basu MK. Delivery in vivo of 14-deoxy-11-oxoandrographolide, an antileishmanial agent, by different drug carriers. Indian J Biochem Biophys. 2003;40(3):169-74.
45. Kheirandish F, Delfan B, Mahmoudvand H, et al. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivi-er extract. Biomed Pharmacother. 2016;82:208-15.
46. Sarkar S, Mandal S, Sinha J, Mukhopadh-yay S, Das N, Basu MK. Quercetin: critical evaluation as an antileishmanial agent in vivo in hamsters using different vesicular deliv-ery modes. J Drug Target. 2002;10(8):573-8.
47. Sousa-Batista AJ, Poletto FS, Philipon CI, Guterres SS, Pohlmann AR, Rossi-Bergmann B. Lipid-core nanocapsules in-crease the oral efficacy of quercetin in cu-taneous leishmaniasis. Parasitol. 2017;144(13):1769-74.
48. Almeida ER. Preclinical and clinical studies of lapachol and beta-lapachone. Open Nat Prod J. 2009;2(1): 42-47.
49. Boveris AL, Docampo RO, Turrens JF, Stoppani AO. Effect of β-lapachone on superoxide anion and hydrogen peroxide production in Trypanosoma cruzi. Biochem J. 1978;175(2):431-9.
50. Ramos-Milaré ÁC, Oyama J, Murase LS, et al. The anti-Leishmania potential of bioac-tive compounds derived from naphtho-quinones and their possible applications. A systematic review of animal studies. Parasi-tol Res. 2022;121(5):1247-1280.
51. Moreno E, Schwartz J, Larrea E, et al. As-sessment of β-lapachone loaded in leci-thin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice. Nanomedi-cine. 2015;11(8):2003-12.
52. Dayawansa S, Umeno K, Takakura H, et al. Autonomic responses during inhalation of natural fragrance of “Cedrol” in humans. Auton Neurosci. 2003;108(1-2):79-86.
53. Kar N, Chakraborty S, De AK, Ghosh S, Bera T. Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibili-ties of wild and drug resistant Leishmania donovani amastigotes. Eur J Pharm Sci. 2017;104:196-211.
54. Zadeh Mehrizi T, Pirali Hamedani M, Ebrahimi Shahmabadi H, et al. Effective materials of medicinal plants for Leishmania treatment in vivo environment. J Med Plant. 2020;19(74):39-62.
55. Torres-Santos EC, Rodrigues Jr JM, Moreira DL, Kaplan MA, Rossi-Bergmann B. Improvement of in vitro and in vivo antileishmanial activities of 2′, 6′-dihydroxy-4′-methoxychalcone by entrap-ment in poly (D, L-lactide) nanoparticles. Antimicrob Agents Chemother. 1999; 43(7):1776-8.
56. Pollier J, Goossens A. Oleanolic acid. Phy-tochemistry. 2012; 77:10-5.
57. Ghosh S, Kar N, Bera T. Oleanolic acid loaded poly lactic co-glycolic acid-vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected visceral leish-maniasis. Int J Biol Macromol. 2016; 93:961-70.
Files
IssueVol 17 No 4 (2022) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/ijpa.v17i4.11272
Keywords
Leishmania Nanocarriers Nanoparticles Herbal medicines Treatment

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Alanazi A, Ben Said M. Plant Bioactive Ingredients in Delivery Systems and Nanocarriers for the Treatment of Leishmaniasis: An Evidence-Based Review. Iran J Parasitol. 2022;17(4):458-472.