Original Article

Overexpression of Iron Super Oxide Dismutases A/B Genes Are Associated with Antimony Resistance of Leishmania tropica Clinical Isolates

Abstract

Background: Pentavalent antimonial has been a drug of choice against leishmaniasis, despite the emergence of treatment failure. Identification of resistance markers is urgently needed to design new therapeutic strategies. Iron-Superoxide dismutases (Fe-SODs) are antioxidant enzymes contributing to detoxify reactive oxygen species to prevent a cell from oxidative stress. Since antimonial compounds induce oxidative stress, in this survey, the expression of SOD genes was investigated to identify their expression pattern in clinical resistant isolates.

Methods: This cross-sectional survey was done in Mashhad City, northeast of Iran during 2014 to 2019. The RNA expression level of mitochondrial (SODA) and glycosomal (SODB) superoxide dismutase was investigated in 25 antimony responsive (n=15) and unresponsive (n=10) anthroponotic cutaneous leishmaniasis (ACL) patients. Total RNA extraction and cDNA synthesis, the qRT-PCR approach was utilized to investigate the relative RNA expression level.

Results: The transcript level of SODs was over-expressed in the most resistant isolates. Gene expression analysis demonstrated the over-expression of SODA and B by a factor of 3.8 and 4.81, respectively, in resistance isolates vs. sensitive ones.

Conclusion: Aberrant expression of SODA/B in unresponsive parasites could potentially implicate in detoxifying antimony-induced oxidative stress. Moreover, SODs might be considered as potential predictive markers of the response to antimonials in ACL patients in endemic areas.

1. Bharati K. Human genetic polymorphism and Leishmaniasis. Infect Genet Evol. 2022;98:105203.
2. Pruzinova K, Sadlova J, Myskova J, Lestinova T, Janda J, Volf P. Leishmania mortality in sand fly blood meal is not species-specific and does not result from direct effect of proteinases. Parasit Vectors. 2018;11(1):1-9.
3. Alvar J, Vélez ID, Bern C, et al. Leishmaniasis worldwide and global estimates of its incidence. PloS One. 2012;7(5):e35671.
4. Hajjaran H, Saberi R, Borjian A, et al. The Geographical Distribution of Human Cutaneous and Visceral Leishmania Species Identified by Molecular Methods in Iran: A Systematic Review With Meta-Analysis. Front Public Health. 2021;9:835.
5. Teimouri A, Mohebali M, Kazemirad E, Hajjaran H. Molecular identification of agents of human cutaneous leishmaniasis and canine visceral leishmaniasis in different areas of Iran using internal transcribed spacer 1 PCR-RFLP. J Arthropod Borne Dis. 2018;12(2):162.
6. Khatami A, Firooz A, Gorouhi F, Dowlati Y. Treatment of acute Old World cutaneous leishmaniasis: a systematic review of the randomized controlled trials. J Am Acad Dermatol. 2007;57(2):335. e1-. e29.
7. Sharifi I, Poursmaelian S, Aflatoonian MR, et al. Emergence of a new focus of anthroponotic cutaneous leishmaniasis due to Leishmania tropica in rural communities of Bam district after the earthquake, Iran. Trop Med Int Health. 2011;16(4):510-3.
8. Gutierrez Guarnizo SA, Karamysheva ZN, Galeano E, Muskus CE. Metabolite biomarkers of Leishmania antimony resistance. Cells. 2021;10(5):1063.
9. Hadighi R, Mohebali M, Boucher P, Hajjaran H, Khamesipour A, Ouellette M. Unresponsiveness to Glucantime treatment in Iranian cutaneous leishmaniasis due to drug-resistant Leishmania tropica parasites. PLoS Med. 2006;3(5):e162.
10. Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19(1):111-26.
11. Walker J, Gongora R, Vasquez JJ, et al. Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Mol Biochem Parasitol. 2012;183(2):166-76.
12. Mohebali M, Kazemirad E, Hajjaran H, et al. Gene expression analysis of antimony resistance in Leishmania tropica using quantitative real-time PCR focused on genes involved in trypanothione metabolism and drug transport. Arch Dermatol Res. 2019;311(1):9-17.
13. Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, et al. Identification of antimony resistance markers in Leishmania tropica field isolates through a cDNA-AFLP approach. Exp Parasitol. 2013;135(2):344-9.
14. Hajjaran H, Azarian B, Mohebali M, Hadighi R, Assareh A, Vaziri B. Comparative proteomics study on meglumine antimoniate sensitive and resistant Leishmania tropica isolated from Iranian anthroponotic cutaneous leishmaniasis patients. East Mediterr Health J. 2012;18(2):165-71.
15. Ghosh S, Goswami S, Adhya S. Role of superoxide dismutase in survival of Leishmania within the macrophage. Biochem J. 2003;369(3):447-52.
16. Plewes KA, Barr SD, Gedamu L. Iron superoxide dismutases targeted to the glycosomes of Leishmania chagasi are important for survival. Infect Immun. 2003;71(10):5910-20.
17. Longoni SS, Sánchez-Moreno M, López JER, Marín C. Leishmania infantum secreted iron superoxide dismutase purification and its application to the diagnosis of canine Leishmaniasis. Comp Immunol Microbiol Infect Dis. 2013;36(5):499-506.
18. Paramchuk WJ, Ismail SO, Bhatia A, Gedamu L. Cloning, characterization and overexpression of two iron superoxide dismutase cDNAs from Leishmania chagasi: role in pathogenesis. Mol Biochem Parasitol. 1997;90(1):203-21.
19. Getachew F, Gedamu L. Leishmania donovani mitochondrial iron superoxide dismutase A is released into the cytosol during miltefosine induced programmed cell death. Mol Biochem Parasitol. 2012;183(1):42-51.
20. Mittra B, Laranjeira-Silva MF, Miguel DC, de Menezes JPB, Andrews NW. The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence. J Biol Chem. 2017;292(29):12324-38.
21. Davenport BJ, Martin CG, Beverley SM, Orlicky DJ, Vazquez-Torres A, Morrison TE. SODB1 is essential for Leishmania major infection of macrophages and pathogenesis in mice. PLoS Negl Trop Dis. 2018;12(10):e0006921.
22. Hajjaran H, Mohebali M, Teimouri A, et al. Identification and phylogenetic relationship of Iranian strains of various Leishmania species isolated from cutaneous and visceral cases of leishmaniasis based on N-acetylglucosamine-1-phosphate transferase gene. Infect Genet Evol. 2014;26:203-12.
23. Hajjaran H, Mohebali M, Mamishi S, et al. Molecular identification and polymorphism determination of cutaneous and visceral leishmaniasis agents isolated from human and animal hosts in Iran. Biomed Res Int. 2013;2013.
24. Saberi R, Fakhar M, Hajjaran H, et al. Presence and diversity of Leishmania RNA virus in an old zoonotic cutaneous leishmaniasis focus, northeastern Iran: Haplotype and phylogenetic based approach. Int J Infect Dis. 2020;101:6-13.
25. Hajjaran H, Kazemi‐Rad E, Mohebali M, et al. Expression analysis of activated protein kinase C gene (LACK 1) in antimony sensitive and resistant Leishmania tropica clinical isolates using real‐time RT‐PCR. Int J Dermatol. 2016;55(9):1020-6.
26. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36-e.
27. Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, et al. Overexpression of ubiquitin and amino acid permease genes in association with antimony resistance in Leishmania tropica field isolates. Korean J Parasitol. 2013;51(4):413.
28. Mishra J, Singh S. Miltefosine resistance in Leishmania donovani involves suppression of oxidative stress-induced programmed cell death. Exp Parasitol. 2013;135(2):397-406.
29. Tessarollo NG, Andrade JM, Moreira DdS, Murta SMF. Functional analysis of iron superoxide dismutase-A in wild-type and antimony-resistant Leishmania braziliensis and Leishmania infantum lines. Parasitol Int. 2015;64(2):125-9.
30. Veronica J, Chandrasekaran S, Dayakar A, et al. Iron superoxide dismutase contributes to miltefosine resistance in Leishmania donovani. The FEBS J. 2019;286(17):3488-503.
31. Jeddi F, Mary C, Aoun K, et al. Heterogeneity of molecular resistance patterns in antimony-resistant field isolates of Leishmania species from the western Mediterranean area. Antimicrob Agents Chemother. 2014;58(8):4866-74.
32. Adaui V, Schnorbusch K, Zimic M, et al. Comparison of gene expression patterns among Leishmania braziliensis clinical isolates showing a different in vitro susceptibility to pentavalent antimony. Parasitology. 2011;138(2):183-93.
33. Genetu A, Gadisa E, Aseffa A, et al. Leishmania aethiopica: Strain identification and characterization of superoxide dismutase-B genes. Exp Parasitol. 2006;113(4):221-6.
34. Leonard SS, Harris GK, Shi X. Metal-induced oxidative stress and signal transduction. Free Radic Biol Med. 2004;37(12):1921-42.
Files
IssueVol 17 No 4 (2022) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijpa.v17i4.11273
Keywords
Superoxide dismutase Gene expression Antimony resistance L. tropica Polymerase chain reaction

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Bahrami A, Mohebali M, Reisi Nafchi H, Raoofian R, Kazemirad E, Hajjaran H. Overexpression of Iron Super Oxide Dismutases A/B Genes Are Associated with Antimony Resistance of Leishmania tropica Clinical Isolates. Iran J Parasitol. 2022;17(4):473-482.