Original Article

A Morinda royoc Root Extract and Fractions Exhibit Antigiardial Activity without Affecting Cell Viability


Background: The gastrointestinal parasite Giardia lamblia causes giardiasis. Its treatment with standard drugs produces side effects and improper treatment can generate resistant strains. New antigiardial compounds are needed. An analysis was done to identify the antigiardial activity of Morinda royoc, a plant used in traditional Mayan medicine to treat stomach and bowel pain. We aimed to assess the efficacy of M. royoc roots against G. lamblia and their effect on cells viability.

Methods: A methanol extract was done of the root and then fractionated. The extract and fractions were tested in vitro on G. lamblia trophozoites and their effect on cell viability was quantified by flow cytometry. The active extract and fractions were analyzed by gas chromatography–mass spectrometry and high-performance liquid chromatography.

Results: The hexane fraction exhibited potent activity against G. lamblia (IC50 = 0.08 µg/mL). Its principal component was an anthraquinone-type compound. None of the fractions were toxic to human promyelocytic leukemia, chronic myelogenous leukemia and human mononuclear cells.

Conclusion: The medicinal plant M. royoc contains promising bioactive agents with antigiardial activity and deserves further research.

1. Soares R, Tasca T. Giardiasis: an update review on sensitivity and specificity of methods for laboratorial diagnosis. J Mi-crobiol Methods. 2016;129:98-102.
2. Dunn N, Juergens AL. StatPearls [Inter-net]. Treasure Island (FL): StatPearls Pub-lishing; 2020-2019 Jan 6. https://www.ncbi.nlm.nih.gov/books/NBK513239/
3. Kulakova L, Galkin A, Chen CZ, Southall N, Marugan JJ, Zheng W, Herzberg O. Discovery of novel antigiardiasis drug candidates. Antimicrob Agents Chemoth-er. 2014;58(12):7303-11.
4. Savioli L, Smith H, Thompson A. Giardia and Cryptosporidium join the ‘Neglected Dis-eases Initiative’. Trends Parasitol. 2006;22(5):203-8.
5. Lalle M, Hanevik K. Treatment-refractory giardiasis: challenges and solutions. Infect Drug Resist. 2018;11:1921-1933.
6. Müller J, Hemphill A, Müller N. Physiolog-ical aspects of nitro drug resistance in Gi-ardia lamblia. Int J Parasitol Drugs Drug Resist. 2018;8(2):271-277.
7. Leung AKC, Leung AAM, Wong AHC, Sergi CM, Kam JKM. Giardiasis: An Overview. Recent Pat Inflamm Allergy Drug Discov. 2019;13(2):134-143.
8. Newman DJ, Cragg GM. Natural prod-ucts as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629-61.
9. Arellano, J, Flores J, Tun J, Cruz M. Etnoflora yucatanense. Nomenclatura, forma de vida, uso, manejo y distribución de las especies vegetales de la Península de Yucatán. Mérida, Yucatán: CONACYT, UADY, Facultad de Medicina Veterinaria y Zootecnia; Fascículo 20. 2003. p 87.
10. Razafimandimbison SG, McDowell TD, Halford DA, Bremer B. Molecular phylo-genetics and generic assessment in the tribe Morindeae (Rubiaceae-Rubioideae): how to circumscribe Morinda L. to be monophyletic? Mol Phylogenet Evol. 2009;52(3):879-86.
11. Osadao R. El Libro del Judío o Medicina Doméstica, Descripción de las Virtudes de las Yerbas Medicinales de Yucatán. Addi-tional notes of Dr. Andrew Heath de Za-pata, 1834, Mérida, Yucatán, México.
12. Roig JT. Plantas medicinales, aromáticas o venenosas de Cuba. La Habana: Editorial Ciencia y Técnica, 1974.
13. Méndez-González M, Durán-García R, Borges-Argáez R, et al. Flora Medicinal De Los Mayas Peninsulares. Mérida, Yucatán, México, 2012. Centro de Investigación Ci-entífica de Yucatán.
14. Cedillo-Rivera R, Darby JM, Enciso-Moreno JA, Ortega-Pierres G. Genetic homogeneity of axenic isolates of Giardia intestinalis derived from acute and chroni-cally infected individuals in Mexico. Parasi-tol Res. 2003;90(2):119-123.
15. Flores-López G, Moreno-Lorenzana D, Ayala-Sanchez M, et al. Parthenolide and DMAPT induce cell death in primitive CML cells through reactive oxygen spe-cies. J Cell Mol Med. 2018; 22(10): 4899-4912.
16. Borroto J, Salazar R, Pérez A, Quiros Y, Hernandez M, Waksman N, Trujillo R. Antimicrobial activity of the dichloro-methane extract from in vitro cultured roots of Morinda royoc and its main constit-uents. Nat Prod Commun. 2010;5(5):809-10.
17. Loonjang K, Duangjinda D, Phongpaichit S, Sawangjaroen N, Rattanaburi S, Maha-busarakam W. A new anthraquinone from Morinda elliptica Ridl. Nat Prod Res. 2015;29(19):1833-8.
18. Cáceres-Castillo D, Pérez-Navarro Y, To-rres-Romero JC, et al. Trichomonicidal ac-tivity of a new anthraquinone isolated from the roots of Morinda panamensis Seem. Drug Dev Res. 2019;80(1):155-161.
19. Liang J, Liang J, Hao H, et al. The Extracts of Morinda officinalis and its hairy roots at-tenuate dextran sodium sulfate-induced chronic ulcerative colitis in mice by regulat-ing inflammation and lymphocyte apopto-sis. Front Immunol. 2017;8:905.
20. Mun-Seog C, Won-Nam K, Woong-Mo Y, Hyu-Young K, Ji-Hoon O, Seong-Kyu P. Cytoprotective effects of Morinda offici-nalis against hydrogen peroxide-induced oxidative stress in Leydig TM3 cells. Asian J Androl. 2008;10(4):667-674.
21. Han Y-S, Van der Heijden R, Verpoorte R. Biosynthesis of anthraquinones in cell cul-tures of the Rubiaceae. Plant Cell Tissue Organ Cult. 2001;67:201-220.
22. Borroto J, Coll J, Rivas M, Blanco M, Concepción O, Tandrón Y, Hernández M, Trujillo R. Anthraquinones from in vitro root culture of Morinda royoc L. Plant Cell Tiss Organ. 2008;94:181-187.
23. Ee GCL, Wen YP, Sukari MA, Go R, Lee HL. A new anthraquinone from Morinda citrifolia roots. Nat Prod Res. 2009;23(14):1322-1329.
24. Abdulmuhsin S. Isolation and identifica-tion of anthraquinones extracted from Morinda citrifolia L. (Rubiaceae). Ann Chro-matogr Sep Tech. 2015;1(3):1012.
25. Reem AA, Yusrida D, Ibrahim MA, Ar-shad AK, Lim V, Lagharia MH. Morinda citrifolia (Noni): A comprehensive review on its industrial uses, pharmacological ac-tivities, and clinical trials. Arab J Chem. 2017;10(5):691-707.
26. Ali M, Kenganora M, Manjula SN. Health benefits of Morinda citrifolia (Noni): A re-view. Pharmacogn J. 2016;8(4):321-334.
27. Ali AM, Ismail NH, Mackeen MM, Yazan LS, Mohamed SM, Ho AS, Lajis NH. An-tiviral, cytotoxic and antimicrobial activities of anthraquinones isolated from the roots of Morinda elliptica. Pharm Biol. 2000;38(4):298-301.
28. Scull I, Cabrera MY, Cabrera I. Suple-mento alimenticio de origen natural y su procedimiento de obtención. Cuba. 2000. Patente N°CU22628: A1
IssueVol 17 No 2 (2022) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijpa.v17i2.9544
Morinda royoc Giardicidal activity Cell viability Anthraquinone

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Quintal Novelo C, Valencia Chan L, Chávez González A, Rangel Méndez J, Moo Puc R. A Morinda royoc Root Extract and Fractions Exhibit Antigiardial Activity without Affecting Cell Viability. Iran J Parasitol. 2022;17(2):259-267.