Immunoinformatics Evaluation of a Fusion Protein Composed of Leishmania infantum LiHyV and Phlebotomus kandelakii Apyrase as a Vaccine Candidate against Visceral Leishmaniasis
Abstract
Background: Visceral leishmaniasis (VL) is a lethal parasitic disease, transmitted by sand fly vectors. Immunomodulatory properties of sand fly saliva proteins and their protective effects against Leishmania infection in pre-exposed animals suggest that a combination of an antigenic salivary protein along with a Leishmania antigen can be considered for designing a vaccine against leishmaniasis
Methods: Three different fusion forms of L. infantum hypothetical protein (LiHyV) in combination with Phlebotomus kandelakii salivary apyrase (PkanAp) were subjected to in-silico analyses. Major Histocompatibility Complex (MHC) class I and II epitopes in both humans and BALB/c mice were predicted. Antigenicity, immunogenicity, epitope conservancy, toxicity, and population coverage were also evaluated. Results: Highly antigenic promiscuous epitopes consisting of truncated LiHyV (10-285) and full-length PkanAp (21-329) were identified in human and was named Model 1. This model contained 25 MHC-I and 141 MHC-II antigenic peptides which among them, MPANSDIRI and AQSLFDFSGLALDSN were fully conserved. LALDSNATV, RCSSALVSI, ALVSINVPL, SAVESGALF of MHC-I epitopes, and 28 MHC-II binding epitopes showed 60% conservancy among various clades. A population coverage with a rate of >75% in the Iranian population and >70% in the whole world was also identified.
Conclusion: Based on this in-silico approach, the predicted Model 1 could potentially be used as a vaccine candidate against VL.
2. Maroli M, Feliciangeli M, Bichaud L, et al. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27(2):123-47.
3. El Hajj R, El Hajj H, Khalifeh I. Fatal vis-ceral leishmaniasis caused by Leishmania in-fantum, Lebanon. Emerg Infect Dis. 2018;24(5):906-7.
4. Mohebali M. Visceral leishmaniasis in Iran: review of the epidemiological and clinical features. Iran J Parasitol. 2013;8(3):348-58.
5. Moafi M, Rezvan H, Sherkat R, et al. Leishmania vaccines entered in clinical trials: A review of literature. Int J Prev Med. 2019;10:95.
6. Duthie MS, Favila M, Hofmeyer KA, et al. Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis. Vaccine. 2016;34(25):2779-86.
7. Ribeiro PA, Dias DS, Lage DP, et al. Eval-uation of a Leishmania hypothetical protein administered as DNA vaccine or recom-binant protein against Leishmania infantum infection and its immunogenicity in hu-mans. Cell Immunol. 2018;331:67-77.
8. Duarte MC, Lage DP, Martins VT, et al. Recent updates and perspectives on ap-proaches for the development of vaccines against visceral leishmaniasis. Rev Soc Bras Med Trop. 2016;49(4):398-407.
9. Fernandes AP, Coelho EAF, Machado-Coelho GLL, et al. Making an anti-amastigote vaccine for visceral leishmania-sis: rational, update and perspectives. Curr Opin Microbiol. 2012;15(4):476-85.
10. Coelho VT, Oliveira JS, Valadares DG, et al. Identification of proteins in pro-mastigote and amastigote-like Leishmania using an immunoproteomic approach. PLoS Negl Trop Dis. 2012;6(1):e1430.
11. Martins VT, Duarte MC, Chávez-Fumagalli MA, et al. A Leishmania-specific hypothetical protein expressed in both promastigote and amastigote stages of Leishmania infantum employed for the sero-diagnosis of, and as a vaccine candidate against, visceral leishmaniasis. Parasit Vec-tors. 2015;8(1):363.
12. Andrade BdB, De Oliveira C, Brodskyn CI, et al. Role of sand fly saliva in human and experimental leishmaniasis: current in-sights. Scand J Immunol. 2007;66(2‐3):122-7.
13. Abdeladhim M, Kamhawi S, Valenzuela JG. What’s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol. 2014;28:691-703.
14. Marzouki S, Ahmed MB, Boussoffara T, et al. Characterization of the antibody re-sponse to the saliva of Phlebotomus papatasi in people living in endemic areas of cuta-neous leishmaniasis. Am J Trop Med Hyg. 2011;84(5):653-61.
15. Vlkova M, Rohousova I, Drahota J, et al. Canine antibody response to Phlebotomus perniciosus bites negatively correlates with the risk of Leishmania infantum transmission. PLoS Negl Trop Dis. 2011;5(10):e1344.
16. Rohousova I, Subrahmanyam S, Volfova V, et al. Salivary gland transcriptomes and proteomes of Phlebotomus tobbi and Phlebotomus sergenti, vectors of leish-maniasis. PLoS Negl Trop Dis. 2012;6(5):e1660.
17. Martín-Martín I, Molina R, Jiménez M. Kinetics of anti-Phlebotomus perniciosus saliva antibodies in experimentally bitten mice and rabbits. PLoS One. 2015;10(11):e0140722.
18. Lestinova T, Rohousova I, Sima M, et al. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11(7):e0005600.
19. Sima M, Ferencova B, Warburg A, et al. Recombinant salivary proteins of Phleboto-mus orientalis are suitable antigens to meas-ure exposure of domestic animals to sand fly bites. PLoS Negl Trop Dis. 2016;10(3):e0004553.
20. Zahra N, Davood K, Morteza A, et al. Epidemiological Aspects of Visceral Leishmaniasis in Larestan and Ghiro-Karzin Counties, Southwest of Iran. Osong Public Health Res Perspect. 2018;9(2):81-5.
21. Duthie MS, Pereira L, Favila M, et al. A defined subunit vaccine that protects against vector-borne visceral leishmaniasis. NPJ Vaccines. 2017;2(1):1-9.
22. Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-9.
23. Armenteros JJA, Tsirigos KD, Sønderby CK, et al. SignalP 5.0 improves signal pep-tide predictions using deep neural net-works. Nat Biotechnol. 2019;37(4):420-3.
24. Abedini F, Rahmanian N, Heidari Z, et al. Diversity of HLA class I and class II alleles in Iran populations: Systematic review and Meta-Analaysis. Transpl Immunol. 2021;69:101472.
25. Ebrahimkhani S, Farjadian S, Ebrahimi M. The Royan Public Umbilical Cord Blood Bank: Does It Cover All Ethnic Groups in Iran Based on HLA Diversity? Transfus Med Hemother. 2014;41(2):134-8.
26. Ashouri E, Norman PJ, Guethlein LA, et al. HLA class I variation in Iranian Lur and Kurd populations: high haplotype and al-lotype diversity with an abundance of KIR ligands. HLA. 2016;88(3):87-99.
27. Esmaeili A, Rabe SZT, Mahmoudi M, et al. Frequencies of HLA-A, B and DRB1 al-leles in a large normal population living in the city of Mashhad, Northeastern Iran. Iran J Basic Med Sci. 2017;20(8):940-3.
28. Amirzargar A, Mytilineos J, Farjadian S, et al. Human leukocyte antigen class II allele frequencies and haplotype association in Iranian normal population. Hum Immu-nol. 2001;62(11):1234-8.
29. Mosayebi M, Dalimi Asl A, Moazzeni M, et al. Differential genomics output and susceptibility of Iranian patients with uni-locular hydatidosis. Iran J Parasitol. 2013;8(4):510-5.
30. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective anti-gens, tumor antigens and subunit vaccines. BMC Bioinformatics. 2007;8(1):4.
31. Bui HH, Sidney J, Li W, et al. Develop-ment of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bio-informatics. 2007;8(1):361.
32. Gupta S, Kapoor P, Chaudhary K, et al. In silico approach for predicting toxicity of peptides and proteins. PLoS One. 2013;8(9):e73957.
33. Dimitrov I, Flower DR, Doytchinova I. AllerTOP--a server for in silico prediction of allergens. BMC Bioinformatics. 2013;14 Suppl 6(Suppl 6):S4.
34. WILKINS MR G, Bairoch A, Sanchez J, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112:531-52.
35. Geourjon C, Deleage G. SOPMA: signifi-cant improvements in protein secondary structure prediction by consensus predic-tion from multiple alignments. Comput Appl Biosci. 1995;11(6):681-4.
36. Cuff JA, Clamp ME, Siddiqui AS, et al. JPred: a consensus secondary structure prediction server. Bioinformatics. 1998;14(10):892-3.
37. Ferrè F, Clote P. DiANNA: a web server for disulfide connectivity prediction. Nu-cleic Acids Res. 2005;33(suppl_2):W230-W2.
38. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinfor-matics. 2008;9(1):40.
39. Wiederstein M, Sippl MJ. ProSA-web: in-teractive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(suppl_2):W407-W10.
40. Ratnapriya S, Sahasrabuddhe AA, Dube A. Visceral leishmaniasis: An overview of vaccine adjuvants and their applications. Vaccine. 2019;37(27):3505-19.
41. Joshi S, Rawat K, Yadav NK, et al. Visceral leishmaniasis: advancements in vaccine development via classical and molecular approaches. Front Immunol. 2014;5:380.
42. Vakili B, Eslami M, Hatam GR, et al. Im-munoinformatics-aided design of a poten-tial multi-epitope peptide vaccine against Leishmania infantum. Int J Biol Macromol. 2018;120:1127-39.
43. Vakili B, Nezafat N, Zare B, et al. A new multi-epitope peptide vaccine induces im-mune responses and protection against Leishmania infantum in BALB/c mice. Med Microbiol Immunol. 2020;209(1):69-79.
44. Tlili A, Marzouki S, Chabaane E, et al. Phlebotomus papatasi yellow-related and apy-rase salivary proteins are candidates for vaccination against human cutaneous leishmaniasis. J Invest Dermatol. 2018;138(3):598-606.
Files | ||
Issue | Vol 17 No 2 (2022) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijpa.v17i2.9530 | |
Keywords | ||
Immunoinformatics Leishmania infantum Phlebotomus kandelakii Apyrase Vaccine |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |