Polycistronic Expression of Multi-Subunit Complexes in the Eukaryotic Environment: A Narrative Review
Abstract
Protein complexes are involved in many vital biological processes. Therefore, researchers need these protein complexes for biochemical and biophysical studies. Several methods exist for expressing multi-subunit proteins in eukaryotic cells, such as 2A sequences, IRES, or intein. Nevertheless, each of these elements has several disadvantages that limit their usage. In this article, we suggest a new system for expressing multi-subunit proteins, which have several advantages over existing methods meanwhile it, lacks most of their disadvantages. Leishmania is a unicellular eukaryote and member of the Trypanosomatidae family. In the expression system of Leishmania, pre-long RNAs that contain several protein sequences transcribe. Then these long RNAs separate into mature mRNAs in the process named trans splicing. For producing multi-subunit protein, Leishmania transformed with a vector containing the sequences of all subunits. Therefore, those subunits translate and form the complex under eukaryotic cell conditions. The sequence of each protein must separate by the spatial sequence needed for trans splicing. Based on a Leishmania expression pattern, not only is it possible to produce the complexes with the correct structures and post-translational modifications, but also it is possible to overcome previous method problems.
2. Hamorsky KT, Grooms-Williams TW, Husk AS, Bennett LJ, Palmer KE, Matoba N. Efficient single tobamoviral vector-based bioproduction of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 in Nicotiana benthamiana plants and utility of VRC01 in combination microbicides. Antimicrob Agents Chemother. 2013;57(5):2076-86.
3. Tan S. A Modular Polycistronic Expression System for Overexpressing Protein Complexes in Escherichia coli. Protein Expr Purif. 2001;21(1):224-34.
4. Brazier-Hicks M, Edwards R. Metabolic engineering of the flavone-C-glycoside pathway using polyprotein technology. Metab Eng. 2013;16:11-20.
5. Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol. 2013;64:665-700.
6. Luger K, Rechsteiner TJ, Flaus AJ, Waye MM, Richmond TJ. Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol. 1997;272(3):301-11.
7. Tan S, Hunziker Y, Sargent DF, Richmond TJ. Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature. 1996;381(6578):127-51.
8. Jaenicke R. Protein self-organization in vitro and in vivo: partitioning between physical biochemistry and cell biology. Biol Chem. 1998;379(3):237-43.
9. Gangloff YG, Werten S, Romier C, et al. The human TFIID components TAF(II)135 and TAF(II)20 and the yeast SAGA components ADA1 and TAF(II)68 heterodimerize to form histone-like pairs. Mol Cell Biol. 2000;20(1):340-51.
10. McNally EM, Goodwin EB, Spudich JA, Leinwand LA. Coexpression and assembly of myosin heavy chain and myosin light chain in Escherichia coli. Proc Natl Acad Sci U S A. 1988;85(19):7270-3.
11. Zhang B, Rapolu M, Liang Z, Han Z, Williams PG, Su WW. A dual-intein autoprocessing domain that directs synchronized protein co-expression in both prokaryotes and eukaryotes. Sci Rep. 2015;5:8541.
12. Ohse M, Takahashi K, Kadowaki Y, Kusaoke H. Effects of plasmid DNA sizes and several other factors on transformation of Bacillus subtilis ISW1214 with plasmid DNA by electroporation. Biosci Biotechnol Biochem. 1995;59(8):1433-7.
13. Selleck W, Tan S. Recombinant protein complex expression in E. coli. Curr Protoc Protein Sci. 2008;Chapter 5:Unit-5.21.
14. Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol. 1987;7(10):3438-45.
15. Créancier L, Mercier P, Prats AC, Morello D. c-myc Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol. 2001;21(5):1833-40.
16. Zitvogel L, Tahara H, Cai Q, et al. Construction and characterization of retroviral vectors expressing biologically active human interleukin-12. Hum Gene Ther. 1994;5(12):1493-506.
17. Liu Z, Chen O, Wall JBJ, et al. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Scientific Reports. 2017;7(1):2193.
18. de Felipe P, Luke GA, Brown JD, Ryan MD. Inhibition of 2A-mediated 'cleavage' of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnol J. 2010;5(2):213-23.
19. Beekwilder J, van Houwelingen A, Cankar K, et al. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnol J. 2014;12(2):174-82.
20. Unkles SE, Valiante V, Mattern DJ, Brakhage AA. Synthetic biology tools for bioprospecting of natural products in eukaryotes. Chem Biol. 2014;21(4):502-8.
21. Azizi H, Hassani K, Taslimi Y, Najafabadi HS, Papadopoulou B, Rafati S. Searching for virulence factors in the non-pathogenic parasite to humans Leishmania tarentolae. Parasitology. 2009;136(7):723-35.
22. Basile G, Peticca M. Recombinant protein expression in Leishmania tarentolae. Mol Biotechnol. 2009;43(3):273-8.
23. Cuypers B, Domagalska MA, Meysman P, et al. Multiplexed Spliced-Leader Sequencing: A high-throughput, selective method for RNA-seq in Trypanosomatids. Scientific Reports. 2017;7(1):3725.
24. Freistadt M, Cross G, Robertson H. Discontinuously synthesized mRNA from Trypanosoma brucei contains the highly methylated 5'cap structure, m7GpppA* A* C (2'-O) mU* A. J Biol Chem. 1988; 263(29):15071-5.
25. Mayer MG, Floeter-Winter LM. Pre-mRNA trans-splicing: from kinetoplastids to mammals, an easy language for life diversity. Mem Inst Oswaldo Cruz. 2005;100(5):501-13.
26. Yague-Sanz C, Hermand D. SL-quant: a fast and flexible pipeline to quantify spliced leader trans-splicing events from RNA-seq data. Gigascience. 2018;7(7):giy084.
27. Dillon LAL, Okrah K, Hughitt VK, et al. Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic Acids Res. 2015;43(14):6799-813.
28. Kazemi B. Genomic organization of Leishmania species. Iran J Parasitol. 2011;6(3):1-18.
29. Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 2019;9(6):190072.
30. Liang X-h, Haritan A, Uliel S, Michaeli S. trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot Cell. 2003;2(5):830-40.
31. Requena JM. Lights and shadows on gene organization and regulation of gene expression in Leishmania. Front Biosci (Landmark Ed) [Internet]; 2011 2011/06//; 16:[2069-85 pp.]. http://europepmc.org/abstract/MED/21622163
32. Lamontagne J, Papadopoulou B. Developmental regulation of spliced leader RNA gene in Leishmania donovani amastigotes is mediated by specific polyadenylation. J Biol Chem. 1999;274(10):6602-9.
33. Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol. 2007;156(2):93-101.
34. Keene JD. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet. 2007;8(7):533-43.
35. Cuervo P, Domont GB, De Jesus JB. Proteomics of trypanosomatids of human medical importance. J Proteomics. 2010;73(5):845-67.
36. Karamysheva ZN, Gutierrez Guarnizo SA, Karamyshev AL. Regulation of Translation in the Protozoan Parasite Leishmania. Int J Mol Sci. 2020;21(8):2981.
37. De Gaudenzi JG, Noé G, Campo VA, Frasch AC, Cassola A. Gene expression regulation in trypanosomatids. Essays Biochem. 2011;51:31-46.
38. Ivens AC, Peacock CS, Worthey EA, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309(5733):436-42.
39. Rastrojo A, Carrasco-Ramiro F, Martín D, et al. The transcriptome of Leishmania major in the axenic promastigote stage: transcript annotation and relative expression levels by RNA-seq. BMC Genomics. 2013;14(1):223.
40. Sugino M, Niimi T. Expression of multisubunit proteins in Leishmania tarentolae. Methods Mol Biol. 2012;824:317-25.
41. Salehi Sangani G, Jajarmi V, Khamesipour A, Mahmoudi M, Fata A, Mohebali M. Generation of a CRISPR/Cas9-Based Vector Specific for Gene Manipulation in Leishmania major. Iran J Parasitol. 2019;14(1):78-88.
Files | ||
Issue | Vol 17 No 3 (2022) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/ijpa.v17i3.10618 | |
Keywords | ||
Leishmania Multi-subunit protein Polycistronic expression system Trans-splicing Peptide |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |