Inhibitory Effect of Hemiscorpius lepturus Scorpion Venom Fractions on Tachyzoites of Toxoplasma gondii
Abstract
Background: The present study determined the effect of the fractions obtained from Hemiscorpius lepturus scorpion venom on the tachyzoite of Toxoplasma gondii.
Methods: The fractions of dried venom of He. lepturus scorpion of Khuzestan Province, southern Iran in 2019 were isolated through gel filtration chromatography, and then tachyzoites were exposed to fractions of venom at different concentrations. Trypan blue counting and MTT were applied to assay tachyzoite viability, and the inhibition of the cellular growth of fractions in Vero cells was evaluated.
Results: The maximum effect on tachyzoite was observed in fraction 5 of venom. To further separate the protein, fraction 5 was used in high-performance liquid chromatography assay to purify its proteins. Based on the results of HPLC of fraction 5, among which the second peak, a peptide with <10 KDa representing a more potent effect in eliminating the tachyzoite of T. gondii.
Conclusion: The scorpion venom-purified fractions possess anti-parasitic activity against the tachyzoite of T. gondii and can be used in parasite-controlling studies.
2. Holland GN, Engstrom RE, Glasgow B, et al. Ocular toxoplasmosis in patients with the acquired immunodeficiency syndrome. Am J Ophthalmol. 1988; 106(6): 653-667.
3. Kim S, Fouts AE, Boothroyd JC. Toxo-plasma gondii Dysregulates IFN-ɣ- Inducible Gene Expression in Human Fibroblasts: Insights from a Genome- Wide Transcrip-tional Profiling. J Immunol. 2007; 178(8): 5154-5165.
4. Bastos LM, Júnior RO, Silva DAO, et al. Toxoplasma gondii: Effects of neuwiedase, a metalloproteinase from Bothrops neuwiedi snake venom, on the invasion and replication of human fibroblasts in vitro. Exp Parasitol. 2008; 120(4): 391-396.
5. Hernández S, De León-Nava MA, Romero-Núñez E, et al. In Vitro Effect of the Synthetic cal14.1a Conotoxin, Derived from Conus californicus, on the Human Parasite Toxoplasma gondii. Mar Drugs. 2016; 14 (4): 66.
6. Bagheri M, Babaei E, Shahbazzadeh D, et al. Development of a recombinant camelid specific diabody against the heminecroly-sin fraction of Hemiscorpius lepturus scorpi-on. Toxin Rev. 2017; 36(1): 7-11.
7. Zabihollahi R, Bagheri KP, Keshavarz Z, et al. Venom components of Iranian scor-pion Hemiscorpius lepturus inhibit the growth and replication of human immunodefi-ciency virus 1 (HIV-1). Iran Biomed J. 2016; 20(5): 259-265.
8. Hancock REW. Cationic peptides: effec-tors in innate immunity and novel antimi-crobials. Lancet Infect Dis. 2001; 1(3): 156–164.
9. Guillaume C, Deregnaucourt C, Clavey V, Schrével J. Anti-Plasmodium properties of group IA, IB, IIA and III secreted phos-pholipases A2 are serum-dependent. Toxi-con. 2004; 43(3): 311-318.
10. Wang Z, Wang G. APD: the Antimicrobial Peptide Database. Nucleic Acids Res. 2004; 32(Database issue):D590-2.
11. Perumal SR, Stiles BG, Franco OL, Sethi G, Lim LHK. Animal venoms as antimi-crobial agents. Biochem Pharmacol. 2017; 134: 127-138.
12. Rodriguez de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na channels and related peptides: biodi-versity, structure-function relationships and evolution. Toxicon. 2005; 46(8): 831-844.
13. Bosmans F, Tytgat J. Voltage-gated sodi-um channel modulation by scorpion al-pha-toxins. Toxicon. 2007; 49(2): 142-158.
14. Ehret-Sabatier L, Loew D, Goyffon M, et al. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem. 1996; 271(47): 29537-29544.
15. Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: a re-view. Peptides. 2014; 51: 35-45.
16. White NJ, Pukrittayakamee S, Hien TT, et al. Malaria. Lancet. 2014; 383(9918):723-35.
17. Yan R, Zhao Z, He Y, et al. A new natural alpha-helical peptide from the venom of the scorpion Heterometrus petersii kills HCV. Peptides. 2011; 32(1): 11-19.
18. Zeng XC, Wang S, Nie Y, et al. Character-ization of BmKbpp, a multifunctional pep-tide from the Chinese scorpion Mesobuthus martensii Karsch: gaining insight into a new mechanism for the functional diversifica-tion of scorpion venom peptides. Pep-tides. 2012; 33(1):44-51.
19. Flores‐Solis D, Toledano Y, RodríguezLi-ma O, et al. Solution structure and antipar-asitic activity of scorpine‐like peptides from Hoffmannihadrurus gertschi. FEBS Lett. 2016; 590(14): 2286-2296.
20. Gao B, Xu J, Carmen Rodriguez M, et al. Characterization of two linear cationic an-timalarial peptides in the scorpion Mesobu-thus eupeus. Biochimie. 2010; 92(4): 350-359.
21. Asmar M, Swelam N, Abdel AAL, et al. Factors in the venom of scorpions toxic to Schistosoma mansoni cercariae. Toxicon. 1980; 18(5-6):711-5.
22. Xu ZM, Li ZS, Wen MX, et al. In vitro effect of medicinal scorpion on the larvae of Ancylostoma caninum. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2008; 26(5): 387-8.
23. Jafari H, Nemati M, Haddad PM, et al. Scolicidal activity of Mesobuthus eupeus ven-om against the protoscolices of Echinococcus granulosus. Arch Razi Inst. 2019; 74(2): 183-189.
24. Borges A, Silva S, Den Camp HO, et al. In vitro leishmanicidal activity of Tityus dis-crepans scorpion venom. Parasitol Res. 2006; 99(2): 167-173.
25. Separovic F, Luna-Ramirez K, Sani MA, et al. Membrane interactions and biological activity of antimicrobial peptides from Australian scorpion. Biochim Biophys Ac-ta. 2014; 1838(9): 2140-2148.
26. Possani LD, Corona M, Zurita M, Rodríguez MH. From Noxiustoxin to Scorpine and Possible Transgenic Mosqui-toes Resistant to Malaria. Arch Med Res. 2002; 33(4):398-404.
27. Conde R, Zamudio FZ, Rodtiguez MH, Possani LD. Scorpine, an antimalarial and anti-bacterial agent purified from scorpion venom. FEBS Lett. 2000; 471(2-3):165-8.
28. Johnson BD, Tullar C, Stahnke HL. A quantitative protozoan Bio-assay method for determining venom potencies. Toxi-con. 1966; 3(4): 297-300.
Files | ||
Issue | Vol 17 No 1 (2022) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijpa.v17i1.9019 | |
Keywords | ||
Scorpion Hemiscorpius lepturus Toxoplasma gondii Tachyzoites Therapeutic effect |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |