Original Article

Mechanism of the Passage of Angiostrongylus cantonensis Across the Final Host Blood-Brain Barrier Using the Next-Generation Sequencing


Background: Multicellular parasites Angiostrogylus cantonensis larvae develop in the final host rat brain at the fourth stage (L4) and migrate to the lungs by the adult stage. The potential mechanism of its blood-brain barrier (BBB) passage remains unclear.

Methods: By using Illumina Hiseq/Miseq sequencing, we obtained the transcriptomes of 3 groups of adult males and 3 groups of female of A. cantonensis to generate similarly expressed genes (SEGs) between 2 genders at the adult stage. Next 2 groups of L4 expressed genes were used to compared with SEGs to create differentially expressed genes (DEGs) between 2 life stages to unlock potential mechanism of BBB passage.

Results: In total, we obtained 381 581 802 clean reads and 56 990 699 010 clean bases. Of these, 331 803 unigenes and 482 056 transcripts were successfully annotated. A total of 3 166 DEGs between L4 and adults SEGs were detected. Annotation of these DEGs showed 167 were down-regulated and 181 were up-regulated. Pathway analysis exhibited that calcium signaling pathway, the ECM−receptor interaction, focal adhesion, and cysteine and methionine metabolism were highly associated with DEGs. The function of these pathways might be related to BBB traversal, as well as neuro-regulation, interactions between parasite and host, environmental adaption.

Conclusion: This study expanded the regulatory characteristics of the two important life stages of A. cantonensis. This information may provide a better appreciation of the biological features of the stages of the parasitic A. cantonensis.

1. Morassutti AL, Perelygin A, De Carvalho MO, et al. High throughput sequencing of the Angiostrongylus cantonensis genome: A parasite spreading worldwide. Parasitology, 2013;140(10):1304-1309.
2. Barratt J, Chan D, Sandaradura I, et al. Angiostrongylus cantonensis: A review of its distribution, molecular biology and clinical significance as a human pathogen. Parasitology. 2016;143(9):1087-1118.
3. Vasconcelos EJR, daSilva LF, Pires DS, Lavezzo GM, Pereira ASA, Amaral MS, Verjovski-Almeida S. The Schistosoma mansoni genome encodes thousands of long non-coding rnas predicted to be functional at different parasite life-cycle stages. Sci Rep. 2017;7:017-10853.
4. Queiroz FR, Portilho LG, Jeremias WJ, et al. Deep sequencing of small rnas reveals the repertoire of mirnas and pirnas in Biomphalaria glabrata. Mem Inst Oswaldo Cruz. 2020; 115:e190498.
5. Luo F, Yin M, Mo X, et al. An improved genome assembly of the fluke Schistosoma japonicum. PLoS Negl Trop Dis. 2019;13(8) : e0007612.
6. Baltrušis P, Halvarsson P, Höglund J. Exploring benzimidazole resistance in Haemonchus contortus by next generation sequencing and droplet digital PCR. Int J Parasitol Drugs Drug Resist. 2018;8(3):411-419.
7. Xu MJ, Fu JH, Nisbet AJ, Huang SY, Zhou DH, Lin RQ, Song HQ, Zhu XQ. Comparative profiling of micrornas in male and female adults of Ascaris suum. Parasitol Res. 2013;112(3):1189-1195.
8. Tantrawatpan C, Intapan PM, Thanchomnang T, et al. Development of a PCR assay and pyrosequencing for identification of important human fish-borne trematodes and its potential use for detection in fecal specimens. Parasit Vectors. 2014; 7:88.
9. Jaber HT, Hailu A, Pratlong F, Lami P, Bastien P, Jaffe CL. Analysis of genetic polymorphisms and tropism in east african Leishmania donovani by amplified fragment length polymorphism and kDNA minicircle sequencing. Infect Genet Evol. 2018;65:80-90.
10. Tessema SK, Raman J, Duffy CW, Ishengoma DS, Amambua-Ngwa A, Greenhouse B. Applying next-generation sequencing to track falciparum malaria in sub-saharan africa. Malar J. 2019;18:019-2880.
11. Talundzic E, Ravishankar S, Kelley J, Patel D, Plucinski M, Schmedes S, Ljolje D, Clemons B, Madison-Antenucci S, Arguin PM, Lucchi NW, Vannberg F, Udhayakumar V. Next-generation sequencing and bioinformatics protocol for malaria drug resistance marker surveillance. Antimicrob Agents Chemother. 2018;62(4):e02474-02417.
12. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The sanger fastq file format for sequences with quality scores, and the solexa/illumina fastq variants. Nucleic Acids Res. 2010;38(6):1767-1771.
13. Erlich Y, Mitra PP, McCombie WR, Hannon GJ. Alta-cyclic: A self-optimizing base caller for next-generation sequencing. Nat Methods. 2008;5(8):679-82.
14. Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644-52.
15. Barragan A, Hitziger N. Transepithelial migration by Toxoplasma. Subcell Biochem. 2008;47:198-207.
16. Kennedy PG. Diagnostic and neuropathogenesis issues in human african trypanosomiasis. Int J Parasitol. 2006;36(5):505-512.
17. Carod-Artal FJ. Neuroschistosomiasis. Expert Rev Anti Infect Ther. 2010;8(11):1307-1318.
18. Ross AG, McManus DP, Farrar J, Hunstman RJ, Gray DJ, Li YS. Neuroschistosomiasis. J Neurol. 2012;259(1):22-32.
19. Palma S, Chile N, Carmen-Orozco RP, et al. Verastegui MR. In vitro model of postoncosphere development, and in vivo infection abilities of Taenia solium and Taenia saginata. PLoS Negl Trop Dis. 2019;13(3) e0007261.
20. Rodriguez MA, Martinez-Higuera A, Valle-Solis MI, et al. A putative calcium-atpase of the secretory pathway family may regulate calcium/manganese levels in the golgi apparatus of Entamoeba histolytica. Parasitol Res. 2018;117(11):3381-3389.
21. Chen F, Zhang L, Lin Z, Cheng ZM. Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling. BMC Genomics. 2018;19(1): 306.
22. Alvarez J, Alvarez-Illera P, Garcia-Casas P, Fonteriz RI, Montero M. The role of ca(2+) signaling in aging and neurodegeneration: Insights from Caenorhabditis elegans models. Cells. 2020;9(1):204
23. Lee JI, Mukherjee S, Yoon KH, Dwivedi M, Bandyopadhyay J. The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and aging. J Biosci. 2013;38(2):417-431.
24. Bais S, Greenberg RM. Trp channels in schistosomes. Int J Parasitol Drugs Drug Resist. 2016;6(3):335-342.
25. Greenberg RM. Ca2+ signalling, voltage-gated ca2+ channels and praziquantel in flatworm neuromusculature. Parasitology. 2005;131 Suppl:S97-108.
26. Noel F, Cunha VM, Silva CL, Mendonca-Silva DL. Control of calcium homeostasis in Schistosoma mansoni. Mem Inst Oswaldo Cruz. 2001;96 Suppl:85-88.
27. Doenhoff MJ, Cioli D, Utzinger J. Praziquantel: Mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis. 2008;21(6):659-667.
28. Zhang S, Lu Z, Liang H, et al. The analysis of gene expression on fertility decline in Caenorhabditis elegans after the treatment with 5-fluorouracil. Iran J Public Health. 2015;44(8):1061-1071.
29. Li M, Huang Q, Wang J, Li C. Differential expression of micrornas in portunus trituberculatus in response to hematodinium parasites. Fish Shellfish Immunol. 2018;83:134-139.
30. Avula LR, Knapen D, Buckinx R, Vergauwen L, Adriaensen D, Van Nassauw L, Timmermans JP. Whole-genome microarray analysis and functional characterization reveal distinct gene expression profiles and patterns in two mouse models of ileal inflammation. BMC Genomics. 2012;13:377
31. Paluch EK, Aspalter IM, Sixt M. Focal adhesion-independent cell migration. Annu Rev Cell Dev Biol, 2016;32:469-490.
32. Ross EC, Olivera GC, Barragan A. Dysregulation of focal adhesion kinase upon Toxoplasma gondii infection facilitates parasite translocation across polarised primary brain endothelial cell monolayers. Cell Microbiol. 2019;21(9): e13048.
33. Onofre TS, Rodrigues JPF, Yoshida N. Depletion of host cell focal adhesion kinase increases the susceptibility to invasion by Trypanosoma cruzi metacyclic forms. Front Cell Infect Microbiol. 2019;9:231.
IssueVol 16 No 3 (2021) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijpa.v16i3.7099
Angiostrongylus cantonensis; Transcriptional sequencing; The fourth stage larvae; Adult stage

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Guo Y, Dong HY, Zhou HC, Zhang ZS, Zhao Y, Zhang YJ. Mechanism of the Passage of Angiostrongylus cantonensis Across the Final Host Blood-Brain Barrier Using the Next-Generation Sequencing. Iran J Parasitol. 2021;16(3):454-463.