Anti-Tumor Effect of Marshallagia marshalli Somatic Antigen on Inhibition Cell Growth of K562
Abstract
Background: Today, the inhibitory effect of helminths on tumor cell growth has been proven. We investigated the anti-tumor activity of Marshallagia marshalli somatic against K562 cells.
Methods: Different concentrations of M. marshalli somatic antigen were incorporated in the culture medium of K652 cells, and the proliferation and apoptosis were measured after 24, 48, and 72 h, using MTT and Annexin V/PI staining assay.
Results: Treatment of cells with 1-2 mg/ml antigen for 24-72 h could suppress cell proliferation and increase apoptosis. While treating cells with 0.1 mg/ml antigen for 72 h could inhibit cell growth. There was no meaningful effect on treated cells in comparison with the control group (P< 0.05) after incubating cells for 24- 48 h with 0.1 mg/ml antigen.
Conclusion: M. marshalli somatic antigen had an anti-cancer property, and its role in cancer treatment could be considered as an effective therapeutic method.
2. Othus M, Kantarjian H, Petersdorf S, et al. Declining Rates of Treatment-Related Mortality in Patients with Newly-diagnosed AML Given “Intense” Induction Regi-mens: A Report from SWOG and MD Anderson. Leukemia. 2014;28(2):289-92.
3. Sorror M, Storer B, Elsawy M, et al. Rela-tive benefit for intensive versus non-intensive induction therapy for patients with newly diagnosed acute myeloid leu-kemia (AML) using a composite, age-comorbidity-cytogenetic, model. Haemato-logica. 2016;101:221-2.
4. Lichtenegger FS, Krupka C, Köhnke T, et al. Immunotherapy for acute myeloid leu-kemia. Semin Hematol. 2015;52(3):207-14.
5. Maizels RM, Balic A, Gomez‐Escobar N, et al. Helminth parasites–masters of regu-lation. Immunol Rev. 2004;201(1):89-116.
6. Van Riet E, Hartgers FC, Yazdanbakhsh M. Chronic helminth infections induce immunomodulation: Consequences and mechanisms. Immunobiology. 2007;212(6):475-90.
7. Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, et al. Mechanisms of modula-tion of experimental autoimmune en-cephalomyelitis by chronic Trichinella spiralis infection in Dark Agouti rats. Parasite Immunol. 2010;32(6):450-9.
8. Yazdanbakhsh M, Kremsner PG, Van Ree R. Allergy, parasites and hygiene hypothe-sis. Science. 2002;296(5567):490-4.
9. Maizels RM, Pearce EJ, Artis D, et al. Reg-ulation of pathogenesis and immunity in helminth infections. J Exp Med. 2009;206(10):2059-2066.
10. Brum C, Barbosa G, Graeff-Teiexeira C, et al. Helminth extracts inhibit eosinophilic inflammation in a murine model of allergic rhinitis. Allergologia et Immunopathologia. 2014; 42(6):632-4.
11. Wang XL, Fu BQ, Yang SJ, et al. Trichinella spiralis—A potential anti-tumor agent. Vet Parasitol. 2009; 159(3-4):249-52.
12. Wang XL, Liu MY, Sun SM, et al. An anti-tumor protein produced by Trichinella spi-ralis induces apoptosis in human hepato-ma H7402 cells. Vet Parasitol. 2013;194(2-4):186-8.
13. Akgül H, Tez M, Unal AE, et al. Echinococcus against cancer: why not? Cancer. 2003;98(9):1998-2000.
14. Ranasinghe SL, and McManus DP. Echino-coccus granulosus: cure for cancer revisited. Front. Front Med (Lausanne). 2018;5:60.
15. Yousofi Darani H, Soozangar N, Khorami S, et al. Hydatid cyst protoscolices induce cell death in WEHI-164 fibrosarcoma cells and inhibit the proliferation of baby ham-ster kidney fibroblasts in vitro. J Parasitol Res. 2012.
16. Kim JO, Jung SS, Kim SY, et al. Inhibition of Lewis Lung Carcinoma Growth by Toxoplasma gondii through Induction of Th1 Immune Responses and Inhibition of An-giogenesis. J Korean Med Sci. 2007;22:S38-46.
17. Ramírez G, Valck C, Aguilar L, et al. Roles of Trypanosoma cruzi calreticulin in parasite–host interactions and in tumor growth. Mol Immunol. 2012;52(3-4):133-40.
18. Chen L, He Z, Qin L, et al. Antitumor effect of malaria parasite infection in a mu-rine Lewis lung cancer model through in-duction of innate and adaptive immunity. PLoS One. 2011;6(9):e24407.
19. Molinari JA, Ebersole JL. Antineoplastic effects of long term Trichinella spiralis infec-tion on B16 melanoma. Int Arch Allergy Appl Immunol. 1977;55(1-6):444-8.
20. Pocock D, Meerovitch E. The anti-neoplastic effect of trichinellosis in a syngeneic murine model. Parasitology. 1982;84(3):463-73.
21. Wu Z, Sofronic-Milosavljevic Lj, Nagano I, et al. Trichinella spiralis: nurse cell for-mation with emphasis on analogy to mus-cle cell repair. Parasit Vectors. 2008;1(1):27.
22. Venugopal PG, Nutman TB, Semnani RT. Activation and regulation of toll-like recep-tors (TLRs) by helminth parasites. Immu-nol Res. 2009;43(1-3):252-63.
23. Bienvenu AL, Gonzalez-Rey E, Picot S. Apoptosis induced by parasitic diseases. Parasit Vectors. 2010;3:106.
24. Huby F, Nano JL, Mallet S, et al. Effects of the excretory/secretory products of Tri-chostrongylus colubriformis on the growth of different cell lines. Int J Parasitol. 1999;29(5):697-702.
25. Givan AL. Flow cytometry: an introduc-tion. Methods Mol Biol. 2011:1-29.
26. Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-color flow cytometry: unrav-elling the immune system. Nature Reviews Immunology. 2004;4(8):648-55.
27. Hawley TS, Hawley RG. Flow cytometry protocols. Springer Science & Business Media; 2004.
28. Bashashati A, Brinkman RR. A survey of flow cytometry data analysis methods. Adv Bioinformatics. 2009; 2009:584603.
29. Klinke DJ, Brundage KM. Scalable analysis of flow cytometry data using R/Bioconductor. Cytometry A. 2009;75(8):699-706.
30. Lugli E, Roederer M, Cossarizza A. Data analysis in flow cytometry: the future just started. Cytometry Part A. 2010;77(7):705-13.
31. Zhang XC, Cai NG, Sun L, et al. [Apop-tosis of human leukemia K562 cell in vitro induced by Toxoplasma gondii]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2007;25(3):185-8.
32. Vasilev S, Ilic N, Gruden-Movsesijan A, et al. Necrosis and apoptosis in Trichinella spi-ralis-mediated tumour reduction. Cent Eur J Immunol. 2015;40(1):42-53.
33. Choo JD, Lee JS, Kang JS, et al. Inhibitory effects of Toxoplasma antigen on prolifera-tion and invasion of human glioma cells. Journal of Korean Neurosurgical Society. 2005;37(2):129-136.
34. Bleul CC, Fuhlbrigge RC, Casasnovas JM, et al. A highly efficacious lymphocyte chemoattractant, stromal cellderived factor 1 (SDF-1). J Exp Med. 1996;184(3):1101-9.
35. Li-Weber M, Krammer PH. Regulation of IL4 gene expression by T cells and thera-peutic perspectives. Nat. Rev. Nat Rev Immunol. 2003;3(7):534-43.
36. Kang YJ, Jo JO, Cho MK, et al. Trichinella spiralis infection reduces tumor growth and metastasis of B16-F10 melanoma cells. Vet Parasitol. 2013;196(1-2):106-13.
37. Dvoroznakova E, Hurnikova Z, Ko-lodziej-Sobocinska M. Development of cellular immune response of mice to infec-tion with low doses of Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis larvae. Parasitol. Res. 2011;108(1):169-76.
38. Grossman D, Altieri DC. Drug resistance in melanoma: mechanisms, apoptosis, and new potential therapeutic targets. Cancer Metast Rev. 2001;20(1-2):3-11.
39. Russo AE, Torrisi E, Bevelacqua Y, et al. Melanoma: molecular pathogenesis and emerging target therapies. Int J Oncol. 2009;34(6):1481-9.
40. Moncharmont C, Levy A, Gilormini M, et al. Targeting a cornerstone of radiation re-sistance: cancer stem cell. Cancer Lett. 2012;322(2):139-47.
41. Collins LG, Haines C, Perkel R, et al. Lung cancer: diagnosis and management. Am Fam Physician. 2007;75(1):56-63.
42. Raez LE, Fein S, Podack ER. Lung cancer immunotherapy. Clin Med Res. 2005;3(4):221-8.
Files | ||
Issue | Vol 17 No 1 (2022) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijpa.v17i1.9013 | |
Keywords | ||
Marshallagia marshalli K562 cells Proliferation Somatic antigen Apoptosis |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |