Original Article

Arthrospira maxima Paradoxical Effect on Trypanosoma cruzi Infection

Abstract

Background: There are only two anti-trypanocidal drugs available, both have a lot of side effects. This is the pioneer study designed to evaluate the Arthrospira maxima effect in Trypanosoma cruzi -infected mice and macrophages.

Methods: A. maxima was administered in vivo, and in vitro (120µL/mL; 200 µL/mL; 500 µL/mL; 852 µL/mL) as prophylaxis, and treatment. In vitro, phagocytosis and viability were measured in macrophages cultures supplemented with A. maxima, and T. cruzi-infected. In vivo A. maxima was supplemented to T. cruzi-infected mice in order to obtain the parasitemia curves, parasite amount, and histopathologic changes. This assay was performed in Biological Sciences National School of National Polytechnic Institute, Mexico City, in 2019.

Results: In vivo, A. maxima administration exacerbates the immune innate host´s response, followed by mice early death. In vitro, A. maxima supplementation promote T. cruzi- macrophage phagocytosis, but also a sooner T. cruzi- infected macrophage death.

Conclusion: A. maxima administration overactive the immune system, decreasing the parasitemia, but causing a severe tissue damage. Then, this nutraceutical has a paradoxical effect on intracellular parasitic infections such as Chagas disease.

1. Chagas disease [Internet]. Who.int. 2018 [cited 7 December 2018]. Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
2. Andrade LO, Andrews NW. The Trypanosoma cruzi-host-cell interplay: location, invasion, retention. Nat Rev Microbiol. 2005;3(10):819-23.
3. Bern C. Chagas' Disease. N Engl J Med. 2015;373(19):1882.
4. Molina I, Salvador F, Sánchez-Montalvá A. Actual-ización en enfermedad de Chagas. Enfermedades Infecciosas y Microbiología Clínica. 2016;34(2):132-138.
5. Bermudez J, Davies C, Simonazzi A, et al. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop. 2016;156:1-16.
6. Carabarin-Lima A, Gonzalez-Vazquez MC, Rodri-guez-Morales O, et al. Chagas disease (American trypanosomiasis) in Mexico: an update. Acta Trop. 2013;127(2):126-35.
7. CDC - Chagas Disease - Resources for Health Professionals - Antiparasitic Treatment [Internet]. Cdc.gov. 2018 [cited 7 December 2018]. https://www.cdc.gov/parasites/chagas/health_professionals/tx.html
8. Finamore A, Palmery M, Bensehaila S, et al. Anti-oxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Eco-friendly Spirulina. Oxid Med Cell Longev. 2017;2017:3247528.
9. Miranda MS, Cintra RG, Barros SB, et al. Antioxi-dant activity of the microalga Spirulina maxima. Braz J Med Biol Res. 1998;31(8):1075-9.
10. Pinero Estrada JE, Bermejo Bescos P, Villar del Fresno AM. Antioxidant activity of the microalga Spirulina maxima. Farmaco. 2001;56(5-7):497-500.
11. Small E. 37. Spirulina – food for the universe. Biodi-versity. 2011;12(4):255-265.
12. Sotiroudis T, Sotiroudis G. Health aspects of Spir-ulina (Arthrospira) microalga food supplement. Journal of the Serbian Chemical Society. 2013;78(3):395-405.
13. Reddy CM, Bhat VB, Kiranmai G, et al. Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem Biophys Res Commun. 2000;277(3):599-603.
14. Shih CM, Cheng SN, Wong CS, et al. Antiinflam-matory and antihyperalgesic activity of C-phycocyanin. Anesth Analg. 2009; 108(4):1303-10.
15. Li YJ, Han Z, Ge L, et al. C-phycocyanin protects against low fertility by inhibiting reactive oxygen species in aging mice. Oncotarget. 2016;7(14):17393-409.
16. Wu Q, Liu L, Miron A, et al. The antioxidant, im-munomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol. 2016;90(8):1817-40.
17. Bhat VB, Madyastha KM. Scavenging of peroxyni-trite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA. Biochem Biophys Res Commun. 2001;285(2):262-6.
18. McCarty MF. ''Iatrogenic Gilbert syndrome''--a strategy for reducing vascular and cancer risk by in-creasing plasma unconjugated bilirubin. Med Hy-potheses. 2007;69(5):974-94.
19. Sanchez B, Monteon V, Reyes PA, et al. Standardi-zation of micro-enzyme-linked immunosorbent as-say (ELISA) and Western blot for detection of Trypanosoma cruzi antibodies using extracts from Mexican strains as antigens. Arch Med Res. 2001;32(5):382-8.
20. Bosseno MF, Barnabe C, Magallon Gastelum E, et al. Predominance of Trypanosoma cruzi Lineage I in Mexico. J Clin Microbiol. 2002; 40(2), 627–632.
21. Arias Citalan G. Evaluacion de cinco derivados de los Benzimidazoles contra promastigotes metacicli-cos y macrofagos infectados con amastigotes de Leishmania mexicana [Maestria en Ciencias]. Istituto Politecnico Nacional; 2009.
22. Lezama-Davila CM, Isaac-Marquez AP, Barbi J, et al. 17Beta-estradiol increases Leishmania mexicana kill-ing in macrophages from DBA/2 mice by enhanc-ing production of nitric oxide but not pro-inflammatory cytokines. Am J Trop Med Hyg. 2007;76(6):1125-7.
23. Dos Santos LM, da Silva TM, Azambuja JH, et al. Methionine and methionine sulfoxide treatment in-duces M1/classical macrophage polarization and modulates oxidative stress and purinergic signaling parameters. Mol Cell Biochem. 2017;424(1-2):69-78.
24. Volpini X, Ambrosio L, Fozzatti L, et al. Trypanoso-ma cruzi Exploits Wnt Signaling Pathway to Pro-mote Its Intracellular Replication in Macrophages. Front Immunol. 2018;9,859.
25. Liao G, Gao B, Gao Y, et al. Phycocyanin Inhibits Tumorigenic Potential of Pancreatic Cancer Cells: Role of Apoptosis and Autophagy. Sci Rep. 2016;6:34564.
26. Balachandran P, Pugh ND, Ma G, et al. Toll-like receptor 2-dependent activation of monocytes by Spirulina polysaccharide and its immune enhancing action in mice. Int Immunopharmacol. 2006;6(12):1808-14.
27. Sales Junior PA, Molina I, Fonseca Murta SM, et al. Experimental and Clinical Treatment of Chagas Disease: A Review. Am J Trop Med Hyg. 2017;97(5):1289-303.
28. Zanluqui N. Macrophage Polarization in Chagas Disease. J Clin Cellular Immunol. 2015;06(02).
29. Cardoso MS, Reis-Cunha JL, Bartholomeu DC. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection. Front Immunol. 2015;6:659.
30. Xu X, He L, Zhang A, et al. Toxoplasma gondii isolate with genotype Chinese 1 triggers trophoblast apop-tosis through oxidative stress and mitochondrial dysfunction in mice. Exp Parasitol. 2015;154:51-61.
31. Saini M, Sanyal S, Vaiphei K. Piroxicam and C-Phycocyanin Mediated Apoptosis in 1,2-Dimethylhydrazine Dihydrochloride Induced Co-lon Carcinogenesis: Exploring the Mitochondrial Pathway. Nutrition and Cancer. 2012;64(3):409-418.
32. Sadek K, Lebda M, Nasr S, et al. Spirulina platensis prevents hyperglycemia in rats by modulating glu-coneogenesis and apoptosis via modification of ox-idative stress and MAPK-pathways. Biomed Phar-macother. 2017; 92:1085-1094.
33. van der Pol A, van Gilst WH, Voors AA, et al. Treating oxidative stress in heart failure: past, pre-sent and future. Eur J Heart Fail. 2019r;21(4):425-435.
34. Estrada D, Specker G, Martinez A, et al. Cardio-myocyte diffusible redox mediators control Trypano-soma cruzi infection: role of parasite mitochondrial iron superoxide dismutase. Biochem J. 2018;475(7):1235-51.
Files
IssueVol 15 No 2 (2020) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijpa.v15i2.3304
Keywords
Chagas disease Dietary supplements Spirulina Trypanosoma cruzi

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
A REBOREDA-HERNANDEZ O, L JUAREZ-SERRANO A, GARCIA-LUNA I, L RIVERO-RAMIREZ N, ORTIZ-BUTRON R, NOGUEDA-TORRES B, GONZALEZ-RODRIGUEZ N. Arthrospira maxima Paradoxical Effect on Trypanosoma cruzi Infection. Iran J Parasitol. 2020;15(2):223-232.