Original Article

Evaluation of Drug Resistant Genotypes to Fansidar and Chloroquine by Studying Mutation in Pfdhfr and Pfmdr1 Genes in Plasmodium falciparum Isolates from Laghman Province, Afghanistan

Abstract

Background: Malaria is one of the major health problems in endemic countries like Afghanistan. Evidence has been reported about reducing the effects of chloroquine against Plasmodium falciparum in many endemic countries. The aim of this study was to investigate the resistance mutations in pfmdr1 and pfdhfr genes of P. falciparum samples detected in blood samples of malaria patients in Laghman Province, Afghanistan.

Methods: Samples were taken on DNA retention cards and 3 glass slides (thin and thick spread) from Laghman Province, Afghanistan in 2018. The pfmdr and pfdhfr mutations in 30 P. falciparum positive samples were examined using PCR-RFLP techniques. The PCR product was then sequenced to determine the mutation at the N86Y and D1246Y mutations of the pfmdr1 and N51, C59, I164, S108 and A16 points of pfdhfr genes.

Results: In the pfmdr1 gene, all samples were wild-type and no mutation was detected at point 86 and D1246Y. In the pfdhfr gene sequences using CLC main workbench software no mutations were detected at codons 16, 51. However, some mutation was observed at codons 59, 108 and 164. These mutations were L164I, S108N and C59R.

Conclusion: Our findings provide evidence of the possible emergence of fansidar-resistant specimens in Laghman. The data of this study provide the basis for future prospective studies in other endemic areas of Afghanistan. The absence of significant mutations in P. falciparum samples of Laghman Province may indicate that this parasite may have switched to chloroquine re-sensitization in this area.

1. World Health Organization, 2019. World Malaria Report 2017. Geneva, Switzerland: World Health Organization
2. World Health Organization. WHO Afghanistan country office, 2019, Geneva, Switzerland , P.15
3. Moore DV, Lanier JE. Observations on two P. falciparum infections with an abnormal response to chloroquine. Am J Trop Med Hyg.1961;10 (1):5-9.
4. Harinasuta T, Suntharasamai P, Viravan C. Chloroquine-resistant falciparum malaria in Thailand. Lancet. 1965; 2(7414):657-60.
5. Fogh S, Jepsen S, Effersøe P. Chloroquine-resistant Plasmodium falciparum malaria in Kenya. Trans R Soc Trop Med Hyg. 1979;73 (2):228-9.
6. Campbell C, Collins W, Chin W, et al. chloroquine-resistant Plasmodium falciparum from east africa:: Cultivation and Drug Sensitivity of the Tanzanian I/CDC Strain from an American Tourist. Lancet. 1979; 2(8153):1151-4.
7. Delfini L. The first case of Plasmodium falciparum resistant to chloroquine treatment discovered in the Republic of Afghanistan. Trans R Soc Trop Med Hyg. 1989;83 (3):316.
8. Duraisingh MT, Roper C, Walliker D, et al . Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Mol Microbiol. 2000;36(4):955–61.
9. Reed MB, Saliba KJ, Caruana SR, et al . Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000; 403(6772):906-9.
10. Heidari AE, Keshavarz H. The Drug Resistance of Plasmodium falciparum and P. vivax in Iran: A Review Article. Iran J Parasitol. 2021;16(2):173-185.
11. Jalousian F, Dalimi A, Samiee SM, et al . Mutation in pfmdr1 gene in chloroquine-resistant Plasmodium falciparum isolates, Southeast Iran. International Journal of Infectious Diseases. 2008;12 (6):630-634.
12. Dalimi A, Jalousian F, Mirab Samiee S, et al . A study on single nucleotide polymorphisms in Plasmodium falciparum chloroquine resistance during two years in Chabahar. MJMS. 2009;11:41-8.
13. Khatoon L, Baliraine FN, Bonizzoni M, et al . Prevalence of antimalarial drug resistance mutations in Plasmodium vivax and P.falciparum from a malaria-endemic area of Pakistan. Am J Trop Med Hyg. 2009;81 (3):525-8.
14. Ghanchi NK, Ursing J, Beg MA, et al . Prevalence of resistance associated polymorphisms in Plasmodium falciparum field isolates from southern Pakistan. Malaria J. 2011;10 (1):18.
15. Khattak AA, Venkatesan M, Jacob CG, et al. A comprehensive survey of polymorphisms conferring anti-malarial resistance in Plasmodium falciparum across Pakistan. Mal J. 2013;12 (1):300.
16. Howard N, Durrani N, Sanda S, et al . Clinical trial of extended-dose chloroquine for treatment of resistant falciparum malaria among Afghan refugees in Pakistan. Mal J. 2011;10:171.
17. Awab GR, Pukrittayakamee S, Jamornthanyawat N, et al. Prevalence of antifolate resistance mutations in Plasmodium falciparum isolates in Afghanistan. Mal J. 2013;12:96.
18. Ecker A, Lehane AM, Fidock DA. Molecular markers of Plasmodium resistance to antimalarials. In: Staines HM, Krishna S, editors. Treatment and prevention of malaria: antimalarial drug chemistry, action and use. Berlin: Springer; 2012. p. 249–80.24.
19. Eskandarian AA, Keshavarz H, Basco LK, Mahboudi F. Do mutations in Plasmodium falciparum dihydropteroate synthase and dihydrofolate reductase confer resistance to sulfadoxine-pyrimethamine in Iran? Trans R Soc Trop Med Hyg. 2002;96(1):96-8.
20. Kublin JG, Dzinjalamala FK, Kamwendo DD, et al. Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. J Infect Dis. 2002;185(3):380–8.
21. Zhao Y, Liu Z, Soe MT, et al . Genetic Variations Associated with Drug Resistance Markers in Asymptomatic Plasmodium falciparum Infections in Myanmar. Genes (Basel). 2019; 10 (9): 692.
22. Lau TY, Sylvi M, William T. Mutational analysis of Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase genes in the interior division of Sabah, Malaysia. Mal J. 2013;12:445.
23. Bosworth CE. "Lamg̲h̲ānāt." Encyclopaedia of Islam, Second Edition. Edited by: P. Bearman , Th. Bianquis , C.E. Bosworth , E. van Donzel and W.P. Heinrichs. Brill, 2009.
24. Mosawi SH, Dalimi A, Safi N, et al. Evaluation of Asymptomatic Malaria Status in Eastern of Afghanistan Using High Resolution Melting Analysis. Iran J Parasitol, 2020; 15(2): 177-186.
25. Chua KH, Lim SC, Ng CC, et al. Development of high resolution melting analysis for the diagnosis of human malaria. Scientific Reports. 2015; 5(1):15671.
26. Mosawi SH, Dalimi A, Safi N, et al. An unlabelled probe‑based real time PCR and modified semi‑nested PCR as molecular tools for analysis of chloroquine resistant Plasmodium vivax isolates from Afghani-stan. Malaria Journal. 2020; 19:253.
27. Foote S, Kyle D, Martin R, et al. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature. 1990;345 (6272):255-8.
28. Wongsrichanalai C, Pickard AL, Wernsdorfer WH, et al . Epidemiology of drug-resistant malaria. Lancet Infect Dis. 2002;2 (4):209-18.
29. Collins WE, Jeffery GM. Plasmodium malariae: parasite and disease. Clin Microbiol Rev. 2007;20 (4):579-592.
30. Zakeri S, Afsharpad M, Kazemzadeh T, et al . Association of pfcrt but not pfmdr1 alleles with chloroquine resistance in Iranian isolates of Plasmodium falciparum. Am J Trop Med Hyg. 2008;78(4):633-40
31. Duraisingh MT, Jones P, Sambou I, et al . The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol. 2000;108 (1):13-23.
32. Khim N, Bouchier C, Ekala M-T, et al. Countrywide survey shows very high prevalence of Plasmodium falciparum multilocus resistance genotypes in Cambodia. Antimicrob Agents Chemother. 2005;49 (8):3147-52.
33. Pickard AL, Wongsrichanalai C, Purfield A, et al. Resistance to antimalarials in Southeast Asia and genetic polymorphisms in pfmdr1. Antimicrob Agents Chemother.2003;47 (8):2418-2423.
34. Mita T1, Kaneko A, Lum JK, et al . Recovery of chloroquine sensitivity and low prevalence of the Plasmodium falciparum chloroquine resistance transporter gene mutation K76T following the discontinuance of chloroquine use in Malawi. Am J Trop Med Hyg. 2003;68 (4):413-5.
35. Kublin JG, Cortese JF, Njunju EM, et al . Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis.2003; 187(12): 1870–5.
36. Vinayak S, Alam MT, Mixson-Hayden T, et al. Origin and evolution of sulfadoxine resistant Plasmodium falciparum. PLoS Pathog. 2010;6(3):e1000830.
37. Berzosa P, Esteban-Cantos A, García L, et al. Profile of molecular mutations in pfdhfr, pfdhps, pfmdr1, and pfcrt genes of Plasmodium falciparum related to resistance to different anti-malarial drugs in the Bata District (Equatorial Guinea). Malar J. 2017; 16(1): 28.
38. Chauvin P, Menard S, Iriart X, et al. Prevalence of Plasmodium falciparum parasites resistant to sulfadoxine/pyrimethamine in pregnant women in Yaoundé, Cameroon: emergence of highly resistant pfdhfr/pfdhps alleles. J Antimicrob Chemother. 2015;70(9):2566–71.
Files
IssueVol 17 No 1 (2022) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijpa.v17i1.9012
Keywords
Afghanistan Plasmodium falciparum Chloroquine Fansidar Drug resistant

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Dalimi A, Mosawi SH, Fotouhi-Ardakani R, Dalirghafari A. Evaluation of Drug Resistant Genotypes to Fansidar and Chloroquine by Studying Mutation in Pfdhfr and Pfmdr1 Genes in Plasmodium falciparum Isolates from Laghman Province, Afghanistan. Iran J Parasitol. 2022;17(1):18-27.