Microsatellite-based genotyping and population structure of Trichomonas vaginalis in Southwest of Turkey
Abstract
Background: The present study aimed to determine genetic variety of Trichomonas vaginalis with microsatellite markers in Turkey and to create a microsatellite typing (MT) approach in a web interface to access data collection. In addition, the endosymbiosis of Mycoplasma hominis and T. vaginalis virus (TVV) in the isolates was also studied.
Methods: The allele sizes for each locus were calculated and microsatellite types were determined according to the allele profiles. The population structure was examined with Bayesian clustering method. A website (http://mttype.adu.edu.tr) was created for collection and sharing of microsatellite data. Presence of TVV and M. hominis in T. vaginalis isolates were investigated with electrophoresis and PCR.
Results: Trichomonas vaginalis was detected in 30 (4.7%) of 630 samples and those were used for further analysis. The structure produced by a clustering algorithm revealed eight genetic groups. The typing of isolates according to microsatellites revealed 23 different microsatellite types. Three clones were determined among isolates (MT10 16.7%; MT18 10% and MT3 6.7%). The frequency of TVV and M. hominis was 16.6% (n=5) and 20% (n=6), respectively.
Conclusions: Presence of three clones among 30 isolates indicates that microsatellite is a powerful tool for determination of clonalities among T. vaginalis isolates. Microsatellite-based genotyping is a promising approach to clarify molecular epidemiology of T. vaginalis. Microsatellite data from further studies will be deposited and presented in the web site. Here, we also presented the presence of two endosymbionts in T. vaginalis for the first time in Turkey.
2. Silver BJ, Guy RJ, Kaldor JM, Jamil MS, Rumbold AR. Trichomonas vaginalis as a cause of perinatal morbidity: a systematic review and meta-analysis. Sex Transm Dis. 2014;41:369-376.
3. Kissinger P, Adamski A. Trichomoniasis and HIV interactions: a review. Sex Transm Inf. 2013;89(6):426-433.
4. Prokopi M, Chatzitheodorou T, Ackers JP, Clark CG. A preliminary investigation of microsatellite-based genotyping in Trichomonas vaginalis. Trans R Soc Trop Med Hyg. 2011;105(8):479-481.
5. Woehle C, Kusdian G, Radine C, Graur D, Landan G, Gould SB. The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighboring genes. BMC Gen. 2014;15:906.
6. Zubacova Z, Cimburek Z, Tachezy J. Comparative analysis of trichomonad genome sizes and karyotypes. Mol Biochem Parasitol. 2008;161(1):49-54.
7. Conrad M, Zubacova Z, Dunn LA. Microsatellite polymorphism in the sexually transmitted human pathogen Trichomonas vaginalis indicates a genetically diverse parasite. Mol Bio Paras. 2011;175(1):30-38.
8. Graves KJ, Ghosh AP, Kissinger PJ, Muzny CA. Trichomonas vaginalis virus: a review of the literature. International journal of STD & AIDS. 2019; 30(5):496-504.
9. Parent KN, Takagi Y, Cardone G, Olson NH et al. Structure of a protozoan virus from the human genitourinary parasite Trichomonas vaginalis. mBio. 2013;4(2):e00056-13.
10. Fraga J, Rojas L, Sariego I, Fernández-Calienes A, Nuñez FA. Species typing of Cuban Trichomonas vaginalis virus by RT-PCR, and association of TVV-2 with high parasite adhesion levels and high pathogenicity in patients. Arch Virol. 2012A;157(9):1789-1795.
11. Rappelli P, Addis MF, Carta F, Fiori PL. Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet. 1998;352:1286.
12. Fichorova R, Fraga J, Rappelli P, Fiori PL. Trichomonas vaginalis infection in symbiosis with Trichomonas virus and Mycoplasma. Res Microbio. 2017;168(9-10):882-891.
13. Land KM, Clemens DL, Johnson PJ. Loss of multiple hydrogenosomal proteins associated with organelle metabolism and high-level drug resistance in trichomonads. Exp Paras. 2001;97(2):102-110.
14. Peakall R, Smouse PE () Genalex 5: Genetic analysis in excel, population genetic software for teaching and research. The Australian National University, Canberra, Australia; 2001. http://www.anu.edu.au/BoZo/GenAlEx/.
15. Raymond M, Rousset F. Genepop (version 1.2) Population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–249.
16. Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online. 2005;1: 47–50.
17. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945-959.
18. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Eco. 2005;14:2611-2620.
19. Earl DA, VonHoldt BM. Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Cons Genet Res. 2012;4: 359-361.
20. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Bio Evol. 1999;16:37-48.
21. Preethi V, Mandal J, Halder A, Parija SC. Trichomoniasis: An update. Trop Parasitol. 2011;1(2):73–75.
22. Kissinger P. Epidemiology and Treatment of Trichomoniasis. Curr Infect Dis Rep. 2015;17(6):484.
23. Çulha G, Gungoren A, Demir C, Hakverdi AU, Duran N. Detection of Trichomonas vaginalis in vaginal specimens from women by wet mount, culture and PCR. Culture. 2015;20(60):10.
24. Ertabaklar H, Caner A, Döşkaya M. Comparison of polymerase chain reaction with wet mount and culture methods for the diagnosis of Trichomoniasis. Türkiye Parazitol Derg. 2011;35:1-5.
25. Schwenkenbecher JM, Wirth T, Schnur LF. Microsatellite analysis reveals genetic structure of Leishmania tropica. Int J Parasitol. 2006;36(2):237–46.
26. Oliveira RP, Broude NE, Macedo AM, Cantor CR, Smith CL, Pena SD. Probing the genetic population structure of Trypanosoma cruzi with polymorphic microsatellites. Proc Natl Acad Sci USA. 1998;95(7):3776–80.
27. Simo G, Njiokou F, Tume C. Population genetic structure of Central African Trypanosoma brucei gambiense isolates using microsatellite DNA markers. Infect Genet Evol. 2010;10(1):68–76.
28. Anderson TJ, Haubold B, Williams JT. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evo. 2000;17(10): 1467-82.
29. Imwong M, Nair S, Pukrittayakamee S. Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol. 2007;3(8-9):1013–1022.
30. Ajzenberg D, Banuls AL, Tibayrenc M, Dardé ML. Microsatellite analysis of Toxoplasma gondii shows considerable polymorphism structured into two main clonal groups. Int J Parasitol. 2002;32(1):27-38.
31. Pearce RJ, Pota H, Evehe MS. Multiple origins and regional dispersal of resistant dhps in African Plasmodium falciparum malaria. PLoS Med. 2009;6:e1000055.
32. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567-1587.
33. Demirağ S, Malatyalı E, Ertuğ S, Ertabaklar H. Determination of Trichomonas vaginalis genotypes using PCR-Restriction Fragment Length Polymorphism (RFLP). Türkiye Parazitol Derg. 2017;41:188–191.
34. Ertabaklar H, Ertuğ S, Çalışkan SÖ, Malatyalı E, Bozdoğan B. Use of internal transcribed spacer sequence polymorphisms as a method for Trichomonas vaginalis genotyping. Türkiye Parazitol Derg. 2018;42:6–10.
35. Goodman RP, Ghabrial SA, Fichorova RN, Nibert ML. Trichomona virus: a new genus of protozoan viruses in the family Totiviridae. Arch Virol. 2011b;156:171–179.
36. Fraga J, Rodríguez N, Fernández C, Mondeja B, Sariego I, Fernández-Calienes A, Rojas L. Mycoplasma hominis in Cuban Trichomonas vaginalis isolates: association with parasite genetic polymorphism. Exp Parasitol. 2012B;131(3):393–398.
37. Masha SC, Cools P, Crucitti T, Sanders EJ, Vaneechoutte M. Molecular typing of Trichomonas vaginalis isolates by actin gene sequence analysis and carriage of T. vaginalis viruses. Parasit Vectors. 2017;10:537.
38. Heidary S, Bandehpour M, Valadkhani Z, Seyyed–Tabaee S, Haghighi A, Abadi A, Kazemi B. Double-stranded RNA viral infection in Tehran Trichomonas vaginalis isolates. Iran J Parasitol. 2013;8(1):60–64.
39. Kim JW, Chung PR, Hwang MK, Choi EY. Double-stranded RNA virus in Korean isolate IH-2 of Trichomonas vaginalis. Korean J Parasitol. 2007;45(2): 87-94.
40. Dessì D, Delogu G, Emonte E, Catania MR, Fiori PL, Rappelli P. Long-term survival and intracellular replication of Mycoplasma hominis in Trichomonas vaginalis cells: potential role of the protozoon in transmitting bacterial infection. Infect Immun. 2005;73(2):1180–1186.
41. Rappelli P, Carta F, Delogu G, Addis MF, Dessì D, Cappuccinelli P, Fiori PL. Mycoplasma hominis and Trichomonas vaginalis symbiosis: multiplicity of infection and transmissibility of M. hominis to human cells. Arch Microbio. 2001;175(1):70-74.
42. Taylor-Robinson D. Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet. 1998;352(9145):2022-2023.
Files | ||
Issue | Vol 16 No 1 (2021) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijpa.v16i1.5515 | |
Keywords | ||
Trichomonas vaginalis microsatellite population structure Mycoplasma T. vaginalis virus |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |