Original Article

Identification and Immunological Characterization of Somatic Proteins from Adults of Toxocara cati by Proteomics Technique

Abstract

Background: Toxocara cati is considered as one of the main etiological agents of toxocariasis with global and regional importance. As there is no information on proteomics of T. cati, herein, we reported the results obtained by proteomic analysis of somatic proteins extract, using a mass spectrometry (LC–MS/MS) approach.

Methods: Somatic extract fractions were separated by two-dimensional SDS-PAGE and were electro blotted on to PVDF membranes for immunoblot analysis, then collected the immunogenic spots which response of antibodies of the paratenic hosts (mice) to the antigens ( Mashhad, 2017), and analyzed by LC–MS/MS. The LC-MS/MS data were analyzed by Mascot database, Taxonomy Toxocara, and common contaminants, in Omics Center, Biotechnology Medical University of Graz (Austria, 2018).

Result: The protein spots were isolated between 15–140 kDa ranges using 3–10 non-linear IPG strips and Brilliant Blue Coomassie. Ten proteins were characterized as immunogenic proteins, seven of them were identified and three of them were unknown proteins.

Conclusion: This study provided additional information about the somatic antigens of T. cati, which can lead to the development of new strategies for novel immuno-modulators, drug targets, subunit vaccines and immunodiagnostic kits for toxocariasis.

1. Maizels RM. Toxocara canis: Molecular basis of immune recognition and evasion. Vet Parasitol.2013;193(4):365-74.
2. Won MD, Schantz PM, Jones JL. National seroprevalence and risk factors for Zoonotic Toxocara spp. infection. Am J Trop Med Hyg.2008;79(4):552-7.
3. Zibaei M, Sadjjadi SM. Trend of toxocariasis in Iran: a review on human and animal di-mensions. Iran J Vet Res. 2017; 18(4): 233–242
4. Carvalho EA, Rocha RL. Toxocariasis: vis-ceral larva migrans in children. J Pediatr (Rio J). 2011; 87(2):100-10.
5. Despommier D. Toxocariasis: Clinical As-pects, Epidemiology, Medical Ecology, and Molecular Aspects. Clin Microbiol Rev. 2003; 16(2):265–72.
6. Rubinsky G, Ehirata C, Yamamoto JH, et al. Human toxocariasis: diagnosis, worldwide seroprevalence and clinical expression of the systemic and ocular forms. Ann Trop Med Parasitol. 2010; 104(1):3-30.
7. Good B, Taylor MR, Larragy J, et al. Ocular toxocariasis in schoolchildren. Clin Infect Dis. 2004; 39(2):173-8.
8. Romano N , Rahmah N, Lim Y, et al. Sero-prevalence of toxocariasis among Orang Asli (Indigenous people) in Malaysia using two immunoassays. Trop Biomed. 2010; 27(3):585-94.
9. Chen J, Liu GH, Zheng WB, et al. Toxoca-riasis: a silent threat with a progressive pub-lic health impact. Infect Dis Poverty. 2018; 7(1):59. doi:10.1186/s40249-018-0437-0.
10. Lee AC, Kazacos KR, Montgomery SP, et al. Epidemiologic and zoonotic aspects of ascarid infections in dogs and cats. Trends Parasitol. 2010; 26(4):155-61.
11. Watthanakulpanich D. Diagnostic Trends of Human Toxocariasis. J Trop Med Parasitol. 2010;33(1):44-52.
12. Zahabiun F, Hafiznur M, , Anizah Y, et al. Production of Toxocara cati TES-120 Re-combinant Antigen and Comparison with its T. canis Homolog for Serodiagnosis of Tox-ocariasis. Am J Trop Med Hyg. 2015; 93(2):319-25.
13. Zibaei M, Sarkari B, Uga S. Evaluation of Toxocara cati Excretory-Secretory Larval An-tigens in Serodiagnosis of Human Toxocari-asis. J Clin Lab Anal .2016; 30(3):248-53.
14. Qian K, Chandramouli K. Proteomics: chal-lenges, techniques and possibilities to over-come biological sample complexity. Hum Genomics Proteomics. 2009; 2009:239204.
15. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998; 19(11):1853-61.
16. McManus DP, Dalton JP. Vaccines against the zoonotic trematodes Schistosoma japoni-cum, Fasciola hepatica and Fasciola gigantica. Par-asitology. 2006; 133 Suppl: S43-61.
17. Tyers M, Mann M. From genomics to pro-teomics. Nature. 2003; 422(6928):193-7.
18. Chehayeb JF, Robertson AP, Martin RJ, et al. Proteomic Analysis of Adult Ascaris suum fluid compartments and secretory products. PLoS Negl Trop Dis. 2014; 8(6):e2939.
19. Moreno Y, Gros P, Tam M, et al. Proteomic Analysis of Excretory-Secretory Products of Heligmosomoides polygyrus Assessed with Next Generation Sequencing Transcriptomic In-formation. PLoS Negl Trop Dis. 2011;5(10):e1370. doi: 10.1371/journal.pntd.0001370
20. Jason Mulvenna BH, Shivashankar H. Naga-raj, et al. Proteomics Analysis of the Excre-tory/Secretory Component of the Blood-feeding Stage of the Hookworm, Ancylostoma caninum. Mol Cell Proteomics. 2009; 8(1):109-21.
21. Rodpai R, Thanchomnang T, Sanpool O, et al. Identification of antigenic proteins in Strongyloides stercoralis by proteomic analysis. Parasitol Res. 2017; 116(6):1687-93.
22. Soblik H, Younis AE, Mitreva M. Life cycle stage-resolved proteomic analysis of the ex-cretome/secretome from Strongyloides ratti identification of stage-specific proteases. Mol Cell Proteomics. 2011; 10(12):M111.010157. doi:10.1074/mcp.M111.010157.
23. Robinson MW, Connolly B. Proteomic anal-ysis of the excretory-secretory proteins of the Trichinella spiralis L1 larva, a nematode parasite of skeletal muscle. Proteomics. 2005; 5(17):4525-32.
24. Da Silva MB, Urrego A JR, Oviedo Y. The somatic proteins of Toxocara canis larvae and excretory-secretory products revealed by proteomics. Vet Parasitol. 2018; 259:25‐34.
25. Kpul DT, Nguyen TTH, Nguyen HH. Identification of Excretory/Secretory Anti-gens Produced by L2 Stage Larvae of Toxo-cara canis Involving in Induction of IgG Re-sponse in Mice by Proteomics Approach. 6th International Conference on the Devel-opment of Biomedical Engineering in Vi-etnam (BME6), IFMBE Proceedings 632018.
26. Vahdati Hassani F, Abnous K, Mehri S, et al. Proteomics and phosphoproteomics anal-ysis of liver in male rats exposed to bi-sphenol A: Mechanism of hepatotoxicity and biomarker discovery. Food Chem Toxicol . 2018; 112; 26–38.
27. Martínez-Ibeas AM, González-Lanza C, Manga-González MY. Proteomic analysis of the tegument and excretory–secretory prod-ucts of Dicrocoelium dendriticum (Digenea) adult worms. Exp Parasitol. 2013; 133(4): 411-20.
28. Shevchenko A, Jensen ON, Podtelejnikov AV, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA. 1996; 93(25):14440-5.
29. Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996; 68(5):850-8.
30. Gugatschka CM, Darnhofer B, Grossmann T, et al. Proteomic Analysis of Vocal Fold Fibroblasts Exposed to Cigarette Smoke Ex-tract: Exploring the Pathophysiology of Reinke's Edema. Mol Cell Proteomics. 2019; 18(8): 1511-1525.
31. Sotillo J, Pearson M, Becker L, et al. A quantitative proteomic analysis of the tegu-mental proteins from Schistosoma mansoni schistosomula reveals novel potential thera-peutic targets. Int J Parasitol. 2015; 45(8):505-16.
32. Sibley LD. Intracellular parasite invasion strategies. Science. 2004; 304(5668):248-53.
33. Gouin E, Welch MD, Cossart P. Actin-based motility of intracellular pathogens. Curr Opin Microbiol. 2005;8(1):35-45.
34. Qin J, Chai G, Brewer JM, et al. Fluoride inhibition of enolase: crystal structure and thermodynamics. Biochemistry. 2006; 45(3):793‐800.
35. Yatsuda AP, Krijgsveld J, Cornelissen AW, et al. Comprehensive analysis of the secret-ed proteins of the parasite Haemonchus contor-tus reveals extensive sequence variation and differential immune recognition. J Biol Chem. 2003;278(19):16941‐16951.
36. Turner DG, Inglis NF, Jones DG. Charac-terization of a galectin-like activity from the parasitic nematode, Haemonchus contortus, which modulates ovine eosinophil migration in vitro. Vet Immunol Immunopathol. 2008; 122(1-2):138-45.
37. Marcilla A P, Espert A, Bernal D, et al. Echinostoma caproni: identification of enolase in excretory/secretory products, molecular cloning, and functional expression. Exp Par-asitol. 2007; 117(1):57-64.
38. Wang T, Steendam KV, Dhaenens M, et al. Proteomic analysis of the excretory-secretory products from larval stages of As-caris suum reveals high abundance of glycosyl hydrolases. PLoS Negl Trop Dis. 2013; 7(10):e2467.
39. Narberhaus F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev. 2002; 66(1):64-93.
40. Pérez-Morales D, Espinoza B. The role of small heat shock proteins in parasites. Cell Stress Chaperones. 2015; 20(5):767-80.
41. Arizono N, Tegoshi T, Takaoka Y, et al. Hsp12.6 Expression Is Inducible by Host Immunity in Adult Worms of the Parasitic Nematode Nippostrongylus brasiliensis. PLoS One. 2011; 6(3):e18141.
42. Deslyper G, Colgan TJ, Cooper AJR, et al. A Proteomic Investigation of Hepatic Re-sistance to Ascaris in a Murine Model. PLoS Negl Trop Dis. 2016; 10(8):e0004837.
43. Lovett MC, Coates JR, Shu Y, et al. Quanti-tative assessment of hsp70 IL-1βand TNF-αin the spinal cord of dogs with E40K SOD1-associated degenerative myelopathy. Vet J. 2014; 200(2):312–317.
44. Wang Y, Cheng Z, Lu X, et al. Echinococcus multilocularis: Proteomic analysis of the pro-toscoleces by two-dimensional electropho-resis and mass spectrometry. Exp Parasitol. 2009; 123(2):162-7.
45. Gobert GN, Duke M Mc, McManus DP. Copro-PCR based detection of Schistosoma eggs using mitochondrial DNA markers. Mol Cell Probes. 2005; 19(4):250-4.
46. Gobert GN, McManus DP. Update on paramyosin in parasitic worms. Parasitol Int. 2005; 54(2):101-7.
47. Cancela M, Rossi S, Frangione B, et al. Puri-fication, characterization, and immunolocali-zation of paramyosin from the adult stage of Fasciola hepatica. Parasitol Res. 2004; 92(6):441-8.
48. Szent-Gyorgyi AG, Cohen C, Kendrick-Jones J. Paramyosin and the filaments of molluscan “catch” muscles II. Native fila-ments: isolation and characterization. J Mol Biol. 1971; 56(2):239–258.
49. Winkelman L. Comparative studies of para-myosin. Comp Biochem Physiol. 1976; 55(3): 391–397.
50. Kantha S, Watabe S, Hashimoto K. Com-parative biochemistry of paramyosin- A Re-view. J Food Biochem. 1990; 14(1):61-88.
51. Wilkins MR, Pasquali C, Appel RD, et al. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Bio-technology (N Y). 1996;14(1):61–65.
52. Paul PR, Timothy A, Haystead J. Molecular biologist's guide to proteomics. Microbiol Mol Biol Rev. 2002; 66(1): 39–63.
53. Pennington S, Wilkins MR, Hochstrasser DF, et al. Proteome analysis: from protein characterization to biological function. Trends Cell Biol.1997; 7(4): 168–173.
54. Sotillo J, Toledo R, Mulvenna J, et al. Ex-ploiting Helminth–Host Interactomes through Big Data. Trends Parasitol. 2017; 33(11):875-888.
55. Maizels RM. Parasitic helminth infections and the control of human allergic and auto-immune disorders. Clin Microbiol Infect. 2016; 22(6):481-6.
Files
IssueVol 16 No 1 (2021) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijpa.v16i1.5508
Keywords
Toxocariasis Mass spectrometry Somatic extract Immunoblot

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
SOLEYMANI N, GRUNBERGER R, ABNOUS khalil, BORJI H, VAHDATI F. Identification and Immunological Characterization of Somatic Proteins from Adults of Toxocara cati by Proteomics Technique. Iran J Parasitol. 2021;16(1):23-31.