Original Article

Anti-Leishmanial and Immunomodulatory Effects of Epigallocatechin 3-O-Gallate on Leishmania tropica: Apoptosis and Gene Expression Profiling

Abstract

Background: Pentavalent antimonials such as meglumine antimoniate (MA, Glucantime), are the first-line treatment against leishmaniasis, but at present, they have basically lost their efficacy. This study was aimed to explore epigallocatechin 3-O-gallate (EGCG), alone or in combination with MA against Leishmania tropica stages.

Methods: All experiments were carried out in triplicate using colorimetric assay, macrophage model, flow cytometry and quantitative real-time PCR. This experimental study was carried out in 2017 in Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Results: Promastigotes and amastigotes were more susceptible to EGCG than MA alone, but the effect was more profound when used in combination. EGCG exhibited high antioxidant level with a remarkable potential to induce apoptosis. Furthermore, the results showed that the level of gene expression pertaining to Th-1 was significantly up-regulated (P<0.001).

Conclusion: EGCG demonstrated a potent anti-leishmanial effect alone and more enhanced lethal activity in combination. The principal mode of action entails the stimulation of a synergistic response and up-regulation of the immunomodulatory role towards Th-1 response against L. tropica.

World Health Organization(WHO). Control of the leishmaniases: report of a meeting of the WHO expert committee on the control of leishmaniases. In: Control of the leishmaniases: report of a meeting of the WHO expert committee on the control of leishmaniases. World Health Organization; 2010.

Alvar J, Velez ID, Bern C, Herrero MM, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. Kirk M, editor. PLoS One. 2012 May;7(5):e35671.

Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis Worldwide and Global Estimates of Its Incidence. Kirk M, editor. PLoS One [Internet]. 2012 May 31 [cited 2018 Jun 9];7(5):e35671. Available from: http://dx.plos.org/10.1371/journal.pone.0035671

Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis [Internet]. 2004 Sep 1 [cited 2018 Apr 18];27(5):305–18. Available from: https://www.sciencedirect.com/science/article/pii/S0147957104000232

Bailey F, Mondragon-Shem K, Hotez P, Ruiz-Postigo JA, Al-Salem W, Acosta-Serrano Á, et al. A new perspective on cutaneous leishmaniasis—Implications for global prevalence and burden of disease estimates. PLoS Negl Trop Dis. 2017 Aug;11(8):e0005739.

Murray HW, Flanders KC, Debra D, Sypek JP, Gotwals PJ, Liu J, et al. Antagonizing Deactivating Cytokines To Enhance Host Defense and Chemotherapy in Experimental Visceral Leishmaniasis Antagonizing Deactivating Cytokines To Enhance Host Defense and Chemotherapy in Experimental Visceral Leishmaniasis. 2005;73(7):3903–11.

Bamorovat M, Sharifi I, Aflatoonian MR, Sharifi H, Karamoozian A, Sharifi F, et al. Risk factors for anthroponotic cutaneous leishmaniasis in unresponsive and responsive patients in a major focus, southeast of Iran. PLoS One. 2018;13(2):1–13.

Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N. Potential applications of antioxidants – A review. J Pharm Res. 2013;7(9):828–35.

Al-Dalaen SM. Review Article: Oxidative Stress Versus Antioxidants. Am J Biosci Bioeng. 2014;2(5):60.

Klebanoff SJ. Myeloperoxidase-Halide-Hydroge n Peroxide Antibacterial System. J Bacteriol. 1968;95(6):2131–8.

Scott DA, Slaymaker IM, Gao L, Zetsche B, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science (80- ). 2016 Jan;351(6268):84 LP-88.

Scott J, Korsching S, Auburger G, Heumann R, Thoenen H. Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO J. 1985;4(6):1389–93.

Basu J, Mookerjee A, Sen P, Bhaumik S, Sen P. gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania. Antimicrob Agents Chemother. 2006;50(5):1788–97.

Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem. 2004;279(38):39925–32.

Dolai S, Yadav RK, Pal S, Adak S. Overexpression of mitochondrial Leishmania major ascorbate peroxidase enhances tolerance to oxidative stress-induced programmed cell death and protein damage. Eukaryot Cell. 2009;8(11):1721–31.

Yang CS, Maliakal P, Meng X. Inhibition of Carcinogenesis by Tea. Annu Rev Pharmacol Toxicol. 2002 Apr;42(1):25–54.

Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. 2006;66(5):2500–5.

Fonseca-Silva F, Inacio JDF, Canto-Cavalheiro MM, Almeida-Amaral EE. Reactive Oxygen Species Production and Mitochondrial Dysfunction Contribute to Quercetin Induced Death in Leishmania amazonensis. PLoS One. 2011 Feb;6(2):e14666.

Güida MC, Esteva MI, Camino A, Flawiá MM, Torres HN, Paveto C. Trypanosoma cruzi: In vitro and in vivo antiproliferative effects of epigallocatechin gallate (EGCg). Exp Parasitol. 2007;117(2):188–94.

Inacio JDF, Canto-Cavalheiro MM, Almeida-Amaral EE. In Vitro and in Vivo Effects of (−)-Epigallocatechin 3-O-gallate on Leishmania amazonensis. J Nat Prod. 2013 Oct;76(10):1993–6.

Inacio JDF, Canto-Cavalheiro MM, S. Menna-Barreto RF, Almeida-Amaral EE. Mitochondrial damage contribute to epigallocatechin-3-gallate induced death in Leishmania amazonensis. Exp Parasitol. 2012;132(2):151–5.

Steinmann J, Buer J, Pietschmann T, Steinmann E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol. 2013;168(5):1059–73.

Sharifi F. Cytotoxicity, leishmanicidal, and antioxidant activity of biosynthesised zinc sulphide nanoparticles using Phoenix dactylifera. IET Nanobiotechnology. 2018 Apr;12(3):264–269(5).

Benzie IFF, Strain JJBT-M in E. [2] Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In: Oxidants and Antioxidants Part A. Academic Press; 1999. p. 15–27.

Gyamfi MA, Yonamine M, Aniya Y. Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Gen Pharmacol Vasc Syst. 1999;32(6):661–7.

Surveswaran S, Cai Y-Z, Corke H, Sun M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 2007;102(3):938–53.

Weniger B, Robledo S, Arango GJ, Deharo E, Aragón R, Muñoz V, et al. Antiprotozoal activities of Colombian plants. J Ethnopharmacol. 2001;78(2):193–200.

Weingärtner A, Kemmer G, Müller FD, Zampieri RA, Gonzaga dos Santos M, Schiller J, et al. Leishmania Promastigotes Lack Phosphatidylserine but Bind Annexin V upon Permeabilization or Miltefosine Treatment. PLoS One. 2012 Aug;7(8):e42070.

Muzitano MF, Tinoco LW, Guette C, Kaiser CR, Rossi-Bergmann B, Costa SS. The antileishmanial activity assessment of unusual flavonoids from Kalanchoe pinnata. Phytochemistry. 2006;67(18):2071–7.

Mukherjee P, Majee SB, Ghosh S, Hazra B. Apoptosis-like death in Leishmania donovani promastigotes induced by diospyrin and its ethanolamine derivative. Int J Antimicrob Agents. 2009 Apr;34(6):596–601.

Pink R, Hudson A, Mouriès M-A, Bendig M. Opportunities and Challenges in Antiparasitic Drug Discovery. Nat Rev Drug Discov. 2005 Sep;4:727.

Inacio JDF, Gervazoni L, Canto-Cavalheiro MM, Almeida-Amaral EE. The Effect of (-)-Epigallocatechin 3-O - Gallate In Vitro and In Vivo in Leishmania braziliensis: Involvement of Reactive Oxygen Species as a Mechanism of Action. PLoS Negl Trop Dis. 2014 Aug;8(8):e3093.

Goyard S, Segawa H, Gordon J, Showalter M, Duncan R, Turco SJ, et al. An in vitro system for developmental and genetic studies of Leishmania donovani phosphoglycans. Mol Biochem Parasitol. 2003;130(1):31–42.

Croft SL, Sundar S, Fairlamb AH. Drug Resistance in Leishmaniasis Drug Resistance in Leishmaniasis. Society. 2006;19(1):111–26.

Figgitt DP, Wojcik SJ, Ralph RK, Ransijn A, Maule J, Tardley V, et al. Structure− Activity Relationships for the Antileishmanial and Antitrypanosomal Activities of 1 ‘-Substituted 9-Anilinoacridines. Maule, J Ransijn, A. 1997;40:2634.

Mehta A, Shaha C. Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: Complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem. 2004;279(12):11798–813.

Chen M, Zhai L, Christensen SB, Thor G, Zhai LIN. Inhibition of Fumarate Reductase in Leishmania major and L . donovani by Chalcones Inhibition of Fumarate Reductase in Leishmania major and L . donovani by Chalcones. Antimicrob Agents Chemother. 2001;45(7):2023–9.

Mahmoudvand H, Saedi Dezaki E, Ezatpour B, Sharifi I, Kheirandish F, Rashidipour M. In Vitro and in Vivo Antileishmanial Activities of Pistacia vera Essential Oil. Planta Med. 2016;82(4):279–84.

Mirzaie M, Nosratabadi SJ, Derakhshanfar A, Sharifi I. Antileishmanial activity of Peganum harmala extract on the in vitro growth of Leishmania major promastigotes in comparison to a trivalent antimony drug. Vet Arh [Internet]. 2007 [cited 2018 Apr 22];77(4):365–75. Available from: http://www-staro.vef.unizg.hr/vetarhiv/papers/2007-77-4-9.pdf

Mahmoudvand H, Sharififar F, Rahmat MS, Tavakoli R, Dezaki ES, Jahanbakhsh S, et al. Evaluation of antileishmanial activity and cytotoxicity of the extracts of Berberis Vulgaris and Nigella sativa against Leishmania tropica. J Vector Borne Dis. 2014;51(4):294–9.

de Kossodo S, Grau GE, Louis JA, Müller I. Tumor necrosis factor alpha (TNF-alpha) and TNF-beta and their receptors in experimental cutaneous leishmaniasis. Infect Immun. 1994;62(4):1414–20.

Belosevic M, Finbloom DS, Meltzer MS, Nacy CA. IL-2. A cofactor for induction of activated macrophage resistance to infection. J Immunol. 1990 Aug;145(3):831 LP-839.

Casanova M, Gonzalez IJ, Sprissler C, Zalila H, Dacher M, Basmaciyan L, et al. Implication of different domains of the Leishmania major metacaspase in cell death and autophagy. Cell Death Dis. 2015;6(10).

Files
IssueVol 14 No 4 (2019) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijpa.v14i4.2094
Keywords
Epigallocatechin 3-O-gallate Leishmania tropica Immunomodulatory role Apoptosis Gene expression

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
SADUQI M, SHARIFI I, BABAEI Z, KEYHANI A, MOSTAFAVI M, HAKIMI PARIZI M, GHASEMIAN M, BAMOROVAT M, SHARIFI F, AFLATOONIAN MR, SHARIFIFAR F, GHASEMI NEJAD P, KHOSRAVI A, SALARKIA E, S. VARMA R. Anti-Leishmanial and Immunomodulatory Effects of Epigallocatechin 3-O-Gallate on Leishmania tropica: Apoptosis and Gene Expression Profiling. Iran J Parasitol. 2019;14(4):521-533.