Original Article

Echinococcus granulosus sensu stricto in Livestock and Human in Hamadan, Western Iran

Abstract

Background: Cystic echinococcosis, a major public health and economic concern, is a zoonotic helminth infection with worldwide distribution. This study was conducted to investigate the genetic characteristics of hydatid cysts isolated from human and livestock in Hamadan region, western Iran during 2016-2017.

Methods: Ten human hydatid cysts and 40 animal hydatid cysts including 32 sheep, 5 cattle and 3 goats were genotyped by PCR amplification of two mitochondrial genes, cox1 and nad1. Genetic identification of the isolates was performed by using bioinformatics software and mtDNA nucleotide sequences of the parasite, available in GenBank database.

Results: The PCR amplification was successfully carried out on 50 hydatid cyst isolates and then the nucleotide sequencing was conducted. The sequence analysis of the samples found that the isolates belonged to E. granulosus sensu stricto including G1 (42/50, 84%), G2 (4/50, 8%) and G3 (4/50, 8%) genotype. The G1 genotype was detected in human (8/10, 80%), sheep (26/32, 81%), cattle (5/5, 100%) and goat (3/3, 100%) hydatid cysts. The G2 and G3 genotypes were found only in sheep and human isolates. Alignment analysis of the cox1 and nad1 gene sequences revealed thirteen and ten sequence types, respectively.

Conclusion: G1 was the prevailing genotype of E. granulosus in the area and dog-sheep transmission cycle should be considered when implementing hydatidosis control programs. In addition, high genetic diversity was detected among the hydatid cyst isolates.

Eckert J, Deplazes P. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. ‎Clin Microbiol Rev. 2004; 17(1):107-35.

Cardona GA, Carmena D. A review of the global prevalence, molecular epidemiology and economics of cystic echinococcosis in production animals. Vet Parasitol. 2013; 192(1):10-32.

Thompson RCA. The taxonomy, phylogeny and transmission of Echinococcus. Exp Parasitol. 2008; 119(4):439–46.

Rokni MB. Echinococcosis /hydatidosis in Iran. Iran J Parasitol. 2009; 4(2):1-16.

Nakao M, McManus DP, Schantz PM, Craig PS, Ito A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology. 2007; 134(pt5):713–22.

Moks E, Jogisalu I, Valdmann H, Saarma U. First report of Echinococcus granulosus G8 in Eurasia and a reappraisal of the phylogenetic relationships of ‘genotypes’ G5–G10. Parasitology. 2008; 135(5):647–54.

Knapp J, Nakao M, Yanagida T, Okamoto M, Saarma U, Lavikainen A, et al. Phylogenetic relationships within Echinococcus and Taenia tapeworms (Cestoda: Taeniidae): An inference from nuclear protein-coding genes. Mol Phylogenet Evol. 2011; 61(3):628–38.

Saarma U, Jogisalu I, Moks E, Varcasia A, Lavikainen A, Oksanen A, et al. A novel phylogeny for the genus Echinococcus, based on nuclear data, challenges relationships based on mitochondrial evidence. Parasitology. 2009; 136(3): 317–28.

Thompson RCA, McManus DP. Aetiology: parasites and life-cycles. In: Eckert J, Gemmell M, Meslin F-X, Pawlowski Z, eds. WHOI/OIE manual on echinococcosis in humans and animals: a public health problem of global concern. Paris: World Organisation for Animal Health, 2001: 1–19.

Harandi MF, Hobbs RP, Adams PJ, Mobedi I, Morgan-Ryan UM, Thompson RCA. Molecular and Morphological Characterization of Echinococcus granulosus of Human and Animal Origin in Iran. Parasitology. 2002; 125(pt4): 367-73.

Sharbatkhori M, Fasihi Harandi M, Mirhendi H, Hajialilo E, Kia EB. Sequence Analysis of cox1 and nad1 Genes in Echinococcus granulosus G3 Genotype in Camels (Camelus Dromedarius) from Central Iran. Parasitol Res. 2011; 108(3):521-7.

Sharbatkhori M, Tanzifi A, Rostami S, Rostami M, Harandi M. Echinococcus granulosus sensu lato Genopypes in Domestic Livestock and Humans in Golestan Province, Iran. Rev Inst Med Trop São Paulo. 2016; 58:38.

Parsa F, Fasihi Harandi M, Rostami S, Sharbatkhori M. Genotyping Echinococcus granulosus from dogs from Western Iran. Exp Parasitol. 2012; 132(2):308–12.

Shahnazi M, Hejazi H, Salehi M, Andalib AR. Molecular characterization of human and animal Echinococcus granulosus isolates in Isfahan, Iran. Acta Trop. 2011; 117(1):47–50.

Fallah M, Taherkhani H, Sajadi M. Echinococcosis in stray dogs in Hamedan, west of Iran. Iran J Med Sci. 1995; 29:170-2.

Fallah M, Matini M, Beygomkia E, Mobedi I. Study of Zoonotic Tissue Parasites (Hydatid Cyst, Fasciola, Dicrocoelium and Sarcocystis) in Hamadan Abattoir. Sci J Hamadan Univ Med Sci. 2010; 17(3):5-12.

Bowles J, Blair D, McManus DP. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol. 1992;54(2):165-73.

Bowles J1, McManus DP. NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. Int J Parasitol. 1993; 23(7):969-72.

Ebrahimipour M, Sadjjadi SM, Yousofi Darani H, Najjari M.Molecular Studies on Cystic Echinococcosis of Camel (Camelus dromedarius) and Report of Echinococcus ortleppi in Iran.Iran J Parasitol. 2017; 12(3):323-31.

Fadakar B, Tabatabaei N, Borji H, Naghibi A. Genotyping of Echinococcus granulosus from goats and sheep indicating G7 genotype in goats in the Northeast of Iran.Vet Parasitol. 2015; 214(1-2):204-7.

Dousti M, Abdi J, Bakhtiyari S, Mohebali M, Mirhendi S, Rokni MB. Genotyping of Hydatid Cyst Isolated from Human and Domestic Animals in Ilam Province, Western Iran Using PCR-RFLP. Iran J Parasitol. 2013; 8(1):47-52.

Gorgani-Firouzjaee T, Kalantrai N, Ghaffari S, Alipour J, Siadati S. Genotype characterization of livestock and human cystic echinococcosis in Mazandaran province, Iran. J Helminthol. 2018; 15:1-5.

Kia EB, Rahimi H, Sharbatkhori M, Talebi A, Fasihi Harandi M, Mirhendi H. Genotype identification of human cystic echinococcosis in Isfahan, central Iran. Parasitol Res. 2010; 107(3):757–60.

Youssefi MR,Tabaripour R, Fallah Omrani V, Spotin A, Esfandiari B. Genotypic characterization of Echinococcus granulosus in Iranian goats. Asian Pac J Trop Dis. 2013; 3(5):362–6.

Okamoto M, Bessho Y, Kamiya M, Kurosawa T, Horii T. Phylogenetic relationships within Taenia taeniaeformis variants and other taeniid cestodes inferred from the nucleotide sequence of the cytochrome c oxidase subunit I gene. Parasitol Res. 1995; 81(6):451-8.

Hassan Z, Meerkhan AA, Boufana B, Hama AA, Ahmed BD, Mero WMS, et al.

Two haplotype clusters of Echinococcus granulosus sensu stricto in northern Iraq (Kurdistan region) support the hypothesis of a parasite cradle in the Middle East. Acta Trop. 2017; 172:201-207.

Kinkar L, Laurimäe T, Sharbatkhori M, Mirhendi H, Kia EB, Ponce-Gordo F, et al.

New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto. Infect Genet Evol. 2017; 52:52-58.

Rostami Nejad M, Taghipour N, Nochi Z, Mojarad EN, Mohebbi SR, Harandi MF, et al. Molecular identification of animal isolates of Echinococcus granulosus from Iran using four mitochondrial genes. J Helminthol. 2012; 86(4):485-92.

Files
IssueVol 14 No 2 (2019) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijpa.v14i2.1141
Keywords
Echinococcus granulosus Genotype; Humans Livestock Mitochondrial genes Iran

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
MATINI M, FALLAH M, MAGHSOOD AH, SAIDIJAM M, FASIHI HARANDI M. Echinococcus granulosus sensu stricto in Livestock and Human in Hamadan, Western Iran. Iran J Parasitol. 2019;14(2):288-296.