Articles

Genomic Organization of Leishmania Species

Abstract

Leishmania is a protozoan parasite belonging to the family Trypanosomatidae, which is found among 88 different countries. The parasite lives as an amastigote in vertebrate macro­phages and as a promastigote in the digestive tract of sand fly. It can be cultured in the laboratory us­ing appropriate culture media. Although the sexual cycle of Leishmania has not been observed during the promastigote and amastigote stages, it has been reported by some researchers. Leishma­nia has eukaryotic cell organization. Cell culture is convenient and cost effective, and because posttranslational modifications are common processes in the cultured cells, the cells are used as hosts for preparing eukaryotic recombinant proteins for research. Several transcripts of rDNA in the Leishmania genome are suitable regions for conducting gene transfer. Old World Leishmania spp. has 36 chromosomes, while New World Leishmania spp. has 34 or 35 chromo­somes. The genomic organization and parasitic characteristics have been investigated. Leishmania spp. has a unique genomic organization among eukaryotes; the genes do not have introns, and the chromosomes are smaller with larger numbers of genes confined to a smaller space within the nucleus. Leishmania spp. genes are organized on one or both DNA strands and are transcribed as polycistronic (prokaryotic-like) transcripts from undefined promoters. Regulation of gene expres­sion in the members of Trypanosomatidae differs from that in other eukaryotes. The trans-splic­ing phenomenon is a necessary step for mRNA processing in lower eukaryotes and is observed in Leishmania spp. Another particular feature of RNA editing in Leishmania spp. is that mitochon­drial genes encoding respiratory enzymes are edited and transcribed. This review will discuss the chromosomal and mitochondrial (kinetoplast) genomes of Leishmania spp. as well as the phenome­non of RNA editing in the kinetoplast genome.

Handman E. Cell biology of Leishmania. Adv Parasitol. 1999; 44: 1-39.

Bard E. Molecular biology of Leishmania. Biochem Cell Biol. 1989; 67(9):516-24.

Panton LJ, Tesh RB, Nadeau KC, Beverley SM. A test for genetic exchange in mixed infections of Leishmania major in the sand fly Phlebotomus papatasi. J Protozool. 1991; 38(3): 224-8.

Cruz AK, Titus R, Beverley SM. Plasticity in chromosome number and testing of essential genes in Leishma nia by targeting. Proc Nati Acad Sci USA.1993; 90: 1599-603.

Victoir k, Dujardin JC. How to succeed in parasitic life without sex? Asking leishmania. Trends Parasitol. 2002; 18(2):81-5.

6- Tibayrenc M, KjellbergF F, Arnaud J, Oury B, Brenipre F, Dardim ML, Ayala FJ. Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. Proc Natl Acad Sci USA. 1991; 88: 5129-33.

YoussefMY, Eissa MM, el Mansoury ST. Evidence of sexual reproduction in the protozoan parasite Leishmania of the Old World. J Egypt Soc Parasitol. 1997; 27(3): 651-7.

Kreutzer RD, Yemma JJ, Grogl M, Tesh RB, Martin TI. Evidence of sexual reproduction in the protozoan parasite Leishmania (Kinetoplastida: Trypanosomatidae). Am J Trop Med Hyg. 1994; 51(3): 301-7.

Tait A. Sexual processes in the kinetoplastida. Parasitology. 1983; 86 (Pt 4): 29-57.

Jenni L. Sexual stages in trypanosomes and implications. Ann Parasitol Hum Comp. 1990; 65 (Suppl 1): 19-21.

Gibson W, Stevens J. Genetic exchange in the trypanosomatidae. Adv Parasitol. 1999; 43:1-46.

Turner CM, Sternberg J, Buchanan N, Smith E, Hide G, Tait A. Evidence that the mechanism of gene exchange in Trypanosoma brucei involves meiosis and syngamy. Parasitology. 1990; 101 (Pt 3): 377-86.

Chang KP, Reed SG, McGwire BS, Soong L. Leishmania model for microbial virulence: the relevance of parasite multiplication and pathoantigenicity. Acta Tropica. 2003; 85(3): 375-90.

Mattner J, Wandersee-Steinhäuser A, Pahl A, Röllinghoff M, MajeauG R,. Hochman PS, Bogdan C. Protection against Progressive Leishmaniasis by IFN-β. J Immunol. 2004; 172: 7574-82.

Scott P. IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol. 1991; 147 (9): 3149-55.

Almeida R, Norrish A, Levick M, Vetrie D, Freeman T, Vilo J, Ivens A, Lange U, Stober C,McCann S, Blackwell JM. From genomes to vaccines: Leishmania as a model. Philos TransR Soc Lond B Biol Sci. 2002; 357(1417): 5-11.

Das BB, Sen N, Dasgupta SB, Ganguly A, Das R, Majumder HK. Topoisomerase research of kin-etoplastid parasite Leishmania, with special reference to development of therapeutics. Indian J Med Res. 2006; 123: 221-32.

Dutta S, Kolli BK, Tang A, Sassa S, Chang KP. Transgenic Leishmania model for delta-aminolevulinate-inducible monospecific uroporphyria: cytolytic phototoxicity initiated by singlet oxygen-mediated inactivation of proteins and its ablation by endosomal mobilization of cytosolic uroporphyrin. Eukaryot Cell. 2008; 7(7): 1146–57.

Louis J,Gumy A, Voigt H, RöckenM, Launois P. Experimental cutaneous Leishmaniasis: a powerful model to study in vivo the mechanisms underlying genetic differences in Th subset differentiation. Euro J Dermatol. 2002; 12(4): 316-8.

El Fadili K, Imbeault M, Messier N, Roy G, Gourbal B, Bergeron M, Tremblay MJ, Légaré D, Ouellette M. Modulation of gene expression in humanmacrophages treated with the anti leishmania pentavalent antimonial drug sodium stibogluconate. Ant-imicrob Agents Chemother. 2008; 52(2): 526-33.

Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005; 309 (5733): 436-42.

PeacockCS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007; 39 (7): 839-47.

Britto C, Ravel C, Bastien P, Blaineau C, Pagès M, Dedet JP, Wincker P. Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. Gene. 1998; 222(1): 107-17.

Wincker P, Ravel C, Blaineau C, PagesM, Jauffret Y, Dedet JP, Bastien P. The Leishmania genome comprises 36 chromosomes conserved across widely divergent human pathogenic species. Nucleic Acids Res. 1996; 24(9): 1688-94.

Ravel C, Macari F, Bastien P, PagèsM, Blaineau C. Conservation among Old World Leishmania species of six physical linkage groups defined in Leishmania infantum small chromosomes. Mol Biochem Parasitol. 1995; 69(1): 1-8.

Ravel C, Dubessay P, Britto C, Blaineau C, Bastien P, Pagès M. High conservation of the fine-scale organisation of chromosome 5 between two pathogenic Leishmania species. Nucleic Acids Res. 1999; 27(12): 2473-7.

McDonagh PD, Peter J. Myler PJ, Stuart K. The unusual gene organization of Leishmania major chromosome 1 may reflect novel transcription processes. Nucleic Acids Res. 2000; 28(14): 2800–3.

Myler PJ, Audleman L, deVos T, Hixson G, Kiser P, Lemley C, Magness C, Rickel E, Sisk E, Sunkin S, Swartzell S,Westlake T, Bastien P, Fu G, Ivens A, Stuart K. Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proc Natl Acad Sci U S A. 1999; 96(6): 2902-6.

Myler PJ, Sisk E,. McDonagh PD, Martinez-Calvillo S, Schnaufer A, Sunkin SM, Yan S, Madhubala R, Ivens A, Stuart K. Genomic org-anization and gene function in leishmania. Bioche Soc Trans. 2000; 28(5): 527–31.

Myler PJ, Beverley SM, Cruz AK, Dobson DE, Ivens AC,McDonagh PD, Madhubala R, Martinez-Calvillo S, Ruiz JC, Saxena A, Sisk E, Sunkin SM, Worthey E, Yan S, Stuart KD. The Leishmania genome project: new insights into gene organization and function. Med Microbiol Immunol. 2001; 190 (1-2): 9-12.

Worthey EA, Martinez-Calvillo S, Schnaufer A et al. Leishmania major chromosome 3 contains two long convergent polycistronic gene clusters separated by a tRNA gene. Nucleic Acids Res. 2003; 31(14): 4201–10

Cohen-Freue G, Holzer TR, Forney JD, McMaster WR. Global gene expression in Leishmania. Int J Parasitol. 2007; 37(10): 1077-86.

Lighthall GK, Giannini SH. The chromosomes of Leishmania. Parasitol Today. 1992; 8(6): 192-9.

Ouellette M, Papadopoulou B.Mechanisms of drug resistance in Leishmania. Parasitol Today. 1993; 9(5): 150-3.

Segovia M. Leishmania gene amplification: amechanism of drug resistance. Ann Trop Med Parasitol. 1994; 88(2): 123-30.

Singh AK, Papadopoulou B, Ouellette M. Gene amplification in amp-hotericin B-resistant Leishmania tarentolae. Exp Parasitol. 2001; 99(3): 141-7

Haimeur A, Ouellette M. Gene Amplification in Leishmania tarentolae Selected for Resistance to Sodium Stibogluconate. Antimicrob Agents Chemother. 1998; 24(7): 1689–94.

Flinn HM, Smith DF. Genomic organization and expression of a differentially regulated gene family from Leishmania major. Nucleic Acids Res.1992; 20(4): 755-62.

Gentil LG, Lasakosvitsch F, Silveira JF, Santos MR, Barbiéri CL. Analysis and chromosomal mapping of Leishmania (Leishmania) amazonensis amastigote expressed sequence tags. Mem Inst Oswaldo Cruz. 2007; 102(6): 707-11.

Fong D, Lee B. Beta tubulin gene of the parasitic protozoan Leishmania Mexicana. Mol Biochem Parasitol. 1983; 31(1): 97-106.

Hejazi SH, Zia-Jahromi N, Bandehpour M, Eslami G, Salehi R, Khamesipour A, Kazemi B. Gene Cloning of Iranian Leishmania major Mannose-1-Phosphate Guanyltransferase. Iran J Parasitol. 2009; 4(3): 1-9.

Kheirandish F, Bandehpour M, Haghighi A, Mohebali M, Mahboudi F, Kazemi B. Molecular cloning, Expression and Enzymatic assay of Iranian Leishmania major pteridine reductase 1. Iran j Parasitol. 2008; 3 (2): 1-9.

Rasouli M, Zavaran Hoseini A, Kazemi B, Alborzi A, Kiany S. Expression of heat shock protein 70 of MCAN/IT/96/LON-49, a tool for diagnosis and future vaccine research. Iran J Immunol. 2009; 6(2): 75-86.

Kazemi B, Tohidi F, Bandehpour M, Yarian F. Molecular Cloning, Expression, and Enzymatic Assay of Pteridine Reductase 1 from Iranian Lizard Leishmania. Iran Biomed J. 2010; 14(3): 97-102.

Shaddel M, Oormazdi H, Akhlaghi L, Kazemi B, BandehpourM. Cloning of Leishmania Major P4 Gene. Yahkhteh Medical Journal. 2008; 10(3): 201-4.

Lee MG, Van der Ploeg LH. Transcription of protein- coding genes in trypanosomes byRNApolymerase I. Ann RevMicrobiol. 1997; 51: 463-89.

Borst P. Discontinuous transcription and antigenic variation in try-panosomes. Annu Rev Biochem. 1986; 55: 701-32.

Martı́nez - Calvillo S, Yan S, Nguyen D, Fox M, Stuart K, Myler PJ. Transcription of Leishmania major Friedlin Chromosome 1 Initiates in Both Directionswithin a Single Region. Mol Cell. 2003; 11(5): 1291-9.

Monnerat S, Martinez-Calvillo S, Worthey E, Myler PJ, Stuart KD, Fasel N. Genomic organization and gene expression in a chromosomal region of Leishmania major. Mol Biochem Parasitol. 2004; 134(2): 233-43.

Dumas C, Chow C, Müller M, Papadopoulou B. A Novel Class of Developmentally Regulated Non-coding RNAs in Leishmania. Eukaryot Cell. 2006; 5(12): 2033-2046.

Miller SI, Wirth DF. Trans splicing in Leishmania enriettii and identification of ribonucleoprotein complexes containing the spliced leader and U2 equivalent RNAs. Mol Cell Biol. 1988; 8(6): 2597-603.

Yang Y, Walsh CE. Spliceosome- Mediated RNA Trans-splicing. Mol Ther. 2005; 12 (6):1006- 12.

Nilsen TW. Trans-splicing: an update. Mol Biochem Parasitol. 1995; 73(1-2): 1-6.

Nilsen TW. Evolutionary origin of SLaddition trans-splicing: still an enigma. Trends in Genet. 2001; 17(12): 678-80.

Pouchkina-Stantcheva NN, Tunnacliffe A. Spliced leader RNA-mediated transsplicing in phylum Rotifera. Mol Biol Evol. 2005; 22(6):1482-9.

ZhangH, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, Lin S. Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci USA. 2007; 104(11): 4618-23.

Nilsen TW. Trans-splicing in protozoa and helmiths. Infect Agents Dis. 1992; 1(4):212-8.

Nilsen TW. Trans-splicing of nematode premessenger RNA. Annu Rev Microbiol. 1993; 47: 413-40.

Brehm K, Jensen K, Frosch M. mRNA Trans-splicing in the Human Parasitic Cestode Echinococcus multilocularis. J Biol Chem. 2000; 275(49): 38311- 8.

Davis RE. Spliced leader RNA transsplicing in metazoa. Parasitol Today. 1996; 12 (1): 33-40.

Requena JM, Quijada L, Soto M, Alonso C. Conserved nucleotides surrounding the trans-splicing acceptor site and the translation initiation codon in leishmania genes. Exp Parasitol. 2003; 103(1-2): 78–81.

Gopal S, Awadalla S, Gaasterland T, Cross GA. A computational inv-estigation of kinetoplastid trans-splicing. Genome Biol. 2005; 6(11):R95.

Carter NS, Yates P, Arendt CS, Boitz JM, Ullman B. Purine and pyrimidine metabolism in Leishmania. Adv Exp Med Biol. 2008; 625: 141-54.

Marr JJ , Berens RL, Nelson DJ. Purine metabolism in Leishmania donovani and Leishmania braziliensis. Biochim Biophys Acta. 1978; 544(2): 360-71.

LaFon SW, Nelson DJ, Berens RL, Marr JJ. Purine and pyrimidine salvage pathways in Leishmania donovani. BiochemPharmacol. 1982; 31(2): 231-8.

Datta AK, Datta R, Sen B. Antiparasitic chemotherapy: tinkering with the purine salvage pathway. Adv ExpMed Biol. 2008; 625: 116-32.

Cunningham ML, Beverley SM. Pteridine salvage throughout the Leishmania infectious cycle: imp-lications for antifolate chemotherapy. Mol Biochem Parasitol. 2001; 113: 199–213.

Morales J, Mogi T, Mineki S, TakashimaE, Mineki R,Hirawake H, Sakamoto K, Omura S, Kita K. Novel mitochondrial complex II isolated from Trypanosoma cruzi is composed of 12 peptides including a heterodimeric Ip= subunit. J Biol Chem. 2009; 284(11): 7255-63.

Kita K, Nihei C, Omitsuka E. Parasite mitochondria as drug target: diversity and dynamic changes during the life cycle. Curr Med Chem. 2003; 10(23): 2535-48.

Biscardi AM, Lopez LM, de Pahn EM, Pellegrino de Iraldi A, Stoppani AO. Effect of dyskinetoplastic agents on ultrastructure and oxidative pho-sphorylation in Crithidia fasciculate. Biocell. 2001; 25(1):43-51.

Yatawara L, Le TH,Wickramasinghe S, Agatsuma T.Maxicircle (mitochondrial) genome sequence (partial) of Leishmania major: gene content, arrangement and composition compared with Leishmania tarentolae. Gene. 2008; 424(1-2): 80-6.

Chen J, Rauch CA, White JH, Englund PT, Cozzarelli NR. The topology of the kinetoplast DNA network. Cell. 1995; 80(1): 61-9.

Englund PT. Free minicircles of kinetoplast DNA in Crithidia fasciculata. J BiolChem. 1979;254(11):4895-900.

Martynkina LP, Novikova EG, Kolesnikov AA, Strel'tsov SA, Semenov TE, Vengerov IuIu. Structural organization of kinetoplast DNA and its compactization in a model systemin vitro. Mol Biol (Mosk). 1989; 23(6): 1645-57.

Ntambi JM, Englund PT. A gap at a unique location in newly replicated kinetoplast DNA minicircles from Trypanosoma equiperdum. J Biol Chem. 1985; 260(9): 5574-9.

Ntambi JM, Shapiro TA, Ryan KA, Englund PT. Ribonucleotides associated with a gap in newly replicated kinetoplast DNA minicircles from Trypanosoma equiperdum. J Biol Chem. 1986; 261(25):11890-5.

Pérez-Morga DL, Englund PT. The attachment of minicircles to kinetoplast DNA networks during replication. Cell. 1993; 74(4): 703-11.

Chen J, Englund PT, Cozzarelli NR. Changes in network topology during the replication of kinetoplast DNA. EMBOJ. 1995; 14(24): 6339-47.

Lindsay ME, Gluenz E, Gull K, Englund PT. A new function of Trypanosoma brucei mitochondrial topoisomerase II is to maintain kinetoplast DNA network topology. MolMicrobiol. 2008; 70(6):1465-76.

SelaD, Yaffe N, Shlomai J. Enzymatic mechanism controls redox-mediated protein-DNA interactions at the replication origin of kinetoplast DNA minicircles. J Biol Chem. 2008; 283(46): 32034-44.

Onn I, Milman-Shtepel N, Shlomai J. Redox potential regulates binding of universal minicircle sequence binding protein at the kinetoplast DNA replication origin. Eukaryot Cell. 2004; 3(2): 277-87.

Milman N, Motyka SA, Englund PT, Robinson D, Shlomai J. Mitochondrial origin-binding protein UMSBP mediates DNA replication and segregation in trypanosomes. Proc Natl Acad Sci USA. 2007; 104(49): 19250-5.

Sela D, Shlomai J. Regulation of UMSBP activities through redoxsensitive protein domains. Nucleic Acids Res. 2009; 37(1): 279-88.

Ferguson ML, Torri AF, Pérez-Morga D, Ward DC, Englund PT. Kinetoplast DNA replication: mechanistic differences between Trypanosoma brucei and Crithidia fasciculata. J Cell Biol. 1994; 126(3): 631-9.

Horton TL, Landweber LF. Rewriting the information in DNA: RNA editing in kinetoplastids and myxomycetes. Curr OpinMicrobiol. 2002; 5(6): 620–6.

Estévez AM, Simpson L. Uridine insertion/deletion RNA editing in trypanosome mitochondria--a review. Gene.1990; 240(2): 247-60.

Benne R.RNAediting in mitochondria of Leishmania tarentolae and Crithidia fasciculata. Semin Cell Biol. 1993; 4(4):241-9.

Sturm NR, Simpson L. Leishmania tarentolae minicircles of different sequence classes encode single guide RNAs located in the variable region= approximately 150 bp from the conserved region. Nucleic Acids Res. 1991; 19(22): 6277-81.

Weng J, Aphasizheva I, Etheridge RD, Huang L, Wang X, Falick AM, Aphasizhev R. Guide RNA-binding complex from mitochondria of trypanosomatids. Mol Cell. 2008; 32(2): 198-209.

Blum B, Bakalara N, Simpson L. A model for RNAediting in kinetoplastid mitochondria: "guide" RNA molecules transcribed from maxicircle DNA provide the edited information. Cell. 1990; 60(2): 189-98.

de la Cruz VF, Lake JA, Simpson AM, Simpson L. A minimal ribosomal RNA: sequence and secondary structure of the 9S kinetoplast ribosomal RNA from Leishmania tarentolae. Proc Natl Acad Sci USA. 1985; 82(5): 1401-5.

Simpson L, Simpson AM, Kidane G, Livingston L, Spithill W. The kinetoplast DNAof the hemoflagellate protozoa. Am J Trop Med Hyg. 1980; 29(5 Suppl): 1053-63.

Masuda H, Simpson L, Rosenblatt H, Simpson AM. Restriction map, partial cloning and localization of 9S and 12S kinetoplast RNA genes on the maxicircle component of the kinetoplast DNA of Leishmania tarentolae. Gene. 1979; 6(1): 51-73.

Simpson AM, Neckelmann N, de la Cruz VF, Muhich ML, Simpson L. Mapping and 5' end determination of kinetoplast maxicircle gene transcripts from Leishmania tarentolae. Nucleic Acids Res. 1985; 13(16): 5977-93.

de la Cruz VF, Simpson AM, Lake JA, Simpson L. Primary sequence and partial secondary structure of the 12S kinetoplast (mitochondrial) ribosomal RNA from Leishmania tarentolae: conservation of peptidyl-transferase structural elements. Nucleic Acids Res. 1985; 13(7): 2337-56.

Rauch CA, Perez-Morga D, Cozzarelli NR, Englund PT. The absence of supercoiling in kinetoplast DNA minicircles. EMBO J. 1993; 12(2): 403-11.

Golas MM, Böhm C, Sander B, Effenberger K, Brecht M, Stark H, Ulrich Göringer HU. Snapshots of the RNA editing machine in trypanosomes captured at different assembly stages in vivo. EMBOJ. 2009; 28: 766 – 78.

de la Cruz VF, Neckelmann N, Simpson L. Sequences of six genes and several, open reading frames in the kinetoplast maxicircle DNA of Leishmania tarentolae. J Biol Chem. 1984; 259 (24): 15136-47.

de Souza W, Attias M, Rodrigues JC. Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J BiochemCell Biol. 2009;41(10): 2069-80.

Motta MC. Kinetoplast as a potential chemotherapeutic target of trypanosomatids. Curr PharmDes. 2008; 14(9):847-54.

Rosenzweig D, Smith D, Myler PJ, Olafson RW, Zilberstein D. Posttranslational modification of cellular proteins during Leishmania donovani differentiation. Proteomics. 2008; 8(9): 1843-50.

HemS, Gherardini PF, Osorio y Fortéa J, Hourdel V, Morales MA, Watanabe R, Pescher P, Kuzyk MA, Smith D, Borchers CH, Zilberstein D, Helmer- Citterich M, Namane A, Späth GF. Identification of Leishmania-specific protein phosphorylation sites by LCESI- MS/MS and comparative genomics analyses. Proteomics. 2010; 10(21):3868-83.

Kaur J, Sundar S, Singh N. Molecular docking, structure-activity relationship and biological evaluation of the anticancer drug monastrol as a pteridine reductase inhibitor in a clinical isolate of Leishmania donovani. J Antimicrob Chemother. 2010; 65(8):1742-8.

Kumar P, Kumar A, Verma SS, Dwivedi N, Singh N, Siddiqi MI, Tripathi RP, Dube A, Singh N. Leishmania donovani pteridine reductase 1: biochemical properties and structure-modeling studies. Exp Parasitol. 2008;120(1):73-9.

Basile G, PeticcaM. Recombinant protein expression in Leishmania tarentolae. Mol Biotechnol. 2009; 43(3):273-8.

SoleimaniM,Mahboudi F, Davoudi N, Amanzadeh A, Azizi M, Adeli A, Rastegar H, Barkhordari F, Mohajer- Maghari B. Expression of human tissue plasminogen activator in the trypanosomatid protozoan Leishmania tarentolae. Biotechnol Appl Biochem. 2007; 48(Pt 1): 55-61.

Hemayatkar M, Mahboudi F, Majidzadeh- A K, Davami F, Vaziri B, Barkhordari F, Adeli A, Mahdian R, Davoudi N. Increased expression of recombinant human tissue pla-sminogen activator in Leishmania tarentolae. Biotechnol J. 2010; 5(11):1198-206.

Mirzaahmadi S, Asaadi Tehrani G, Bandehpour M, DavoudiN, Tahmasbi L, Mirzahoseini H, Parivar K, Kazemi B. Expression of recombinant human coagulation factor VII by the Lizard Leishmania expression system. JBB; 2011:

Sereno D, Lemesre JL. Axenically Cultured Amastigote Forms as an In Vitro Model for Investigation of Antileishmanial Agents. Antimicrob Agen Chemothe. 1997; 41(5): 972–6.

Gupta S, Nishi. Visceral leishmaniasis: Experimental models for drug discovery. Indian J Med Res. 2011; 133: 27-39.

Tulloch LB, Martini VP, Iulek J, Huggan JK, Lee JH, Gibson CL, Smith TK, Suckling CJ, Hunter WN. Structure-based design of pteridine reductase inhibitors targeting African sleeping sickness and the leishmaniases. J Med Chem. 2010; 53(1): 221-229.

Cavazzuti A, Paglietti G, Hunter WN, Gamarro F, Piras S, LorigaM, Allecca S, Corona P, McLuskey K, Tulloch L, Gibellini F, Ferrari S, Costi MP. Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proc Natl Acad Sci U S A. 2008;105(5):1448-1453.

Panavas T, Sanders C, Butt TR. SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. Methods Mol Biol. 2009; 497: 303-317.

Peroutka Iii RJ, Orcutt SJ, Strickler JE, Butt TR. SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes. Methods Mol Biol. 2011; 705: 15-30.

García-Estrada C, Reguera RM, Villa H, Requena JM, Müller S, Pérez- Pertejo Y, Balaña-Fouce R, Ordóñez D. Identification of a gene in Leishmania infantum encoding a protein that contains a SP-RING/MIZ zinc finger domain. Biochim Biophys Acta. 2003; 1629(1-3): 44-52.

Files
IssueVol 6 No 3 (2011) QRcode
SectionArticles
Keywords
Leishmania Kinetoplast Genome RNA editing Trans-splicing

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Kazemi B. Genomic Organization of Leishmania Species. Iran J Parasitol. 1;6(3):1-18.