Original Article

Comparative Efficacy of Diethylcarbamazine, Nitazoxanide and Nanocomposite of Nitazoxanide and Silver Nanoparticles on the Dehydrogenases of TCA Cycle in Setaria cervi, in Vitro

Abstract

Background: Bovine filariid, Setaria cervi may cause serious pathological condition such as cerebrospinal nematodiasis in sheep, goat and horses. Since TCA cycle enzymes have certain biological functions that make them essential for the survival of parasite and therefore, efficacy of diethylcarbamazine (DEC), nitazoxanide (NTZ) and a nanocomposite of nitazoxanide and silver nanoparticles (NTZ+AgNPs) was assessed on succinate, malate and isocitrate dehydrogenases in the microfilariae (mf) and adult S. cervi worms.

Methods: This study was conducted in the Department of Zoology, Aligarh Muslim University, Aligarh, India during 2015-2016. Adult and microfilariae of S. cervi were incubated in 100 mg/ml of DEC, NTZ, and NTZ+AgNPs for 24 and 6 h, respectively at 37 °C. Succinate, malate and isocitrate dehydrogenases were localized by putting the mf and adult worms in the incubating medium containing their respective substrates at 37 °C for 2 h followed by counterstaining in 2% methylene green for 15 min.

Results: Maximum inhibition of TCA cycle enzymes was observed in both microfilariae and adult worms treated with nanocomposite of NTZ-AgNPs. Ruptured sheath along with nanoparticles sticking to the body surface was noticed in NTZ+AgNPs treated microfilariae.

Conclusion: NTZ+AgNPs proved most effective synergistic combination against TCA cycle enzymes which blocked the isocitrate and malate dehydrogenase almost completely, and succinate dehydrogenase to large extent in both microfilariae as well as adult worms of S. cervi. AgNPs ruptured the sheath and allowed the NTZ to attach and penetrate the main body to exert maximum effect on the enzymes.

Pachauri SP. Cerebrospinal nematodiasis in a buffalo. A case report. Indian J. Anim. Res. 1972; 6: 17.

Ahmad R, Srivastava AK. Biochemical composition and metabolic pathways of filarial worms Setaria cervi: search for new antifilarial agents. J. Helminthol. 2007; 81: 261-80.

Singh A, Rathaur S. Combination of DEC plus aspirin induced mitochondrial mediated apoptosis in filarial parasite Setaria cervi. Biochimie. 2010; 92: 894-900.

El-Shahawi GA, Abdel-Latif M, Saad AH, Bahgat M. Setaria equina: in vivo effect of diethylcarmazine citrate on microfilariae in albino rats. Exp. Parasitol. 2010; 126: 603-610.

Srinivasan L, Mathew N, Karunan T, Muthuswamy K. Biochemical studies on glutathione S-transferase from the bovine filarial worm Setaria digitata. Parasitol. Res. 2011; 109: 213-219.

Anwar N, Ansari AA, Ghatak S, Krishnamurti S. Setaria cervi: Enzymes of glycolysis and PEP-succinate pathway. Z. Parasitenkd. 1977; 51: 275-283.

Walter RD. Inhibition of lactate dehydrogenase activity of Dirofilaria immitis by suramin. Z. Tropenmed. U. Parasitol. 1979; 30: 463-465.

Agarwal A, Tekwani BL, Shukla OP, Ghatak S. Effect of anthelmintics and adenosine 5'- triphosphatases of filarial parasite Setaria cervi. Indian J. Exp. Biol. 1990; 28: 245-248.

Hussain H, Shukla OP, Ghatak S, Kaushal NA. Enzymes of PEP –succinate pathway in Setaria cervi and effect of anthelmintic drugs. Indian J. Exp. Biol. 1990; 28: 871-875.

Khan W, Umm-E-Asma Taufiq F. Effect of anthelmintics on the enzyme activities of Setaria cervi implanted intraperitoneally in rabbits. J. Vet. Parasitol. 2012; 26(1): 48-52.

Wolstenholme AJ, Fairweather I, Prichard R, Von-Samson-Himmelstjerna G, Sangster NC. Drug resistance in veterinary helminth. Trends Parasitol. 2004; 20: 469-476.

Von Samson-Himmelstjerna G, Blackhall W. Will technology provide solutions for drug resistance in veterinary helminths? J. Vet. Parasitol. 2005; 132: 223-229.

Barnes EH, Dobson RJ, Barger IA. Worm control and anthelmintic resistance: adventures with a model. Parasitol. Today. 1995; 11: 56-63.

Nyunt MM, Plowe CV. Pharmacologic advances in the global control and treatment of malaria: combination therapy and resistance. Clin. Pharmacol. Ther. 2007; 82: 601-605.

Rossignol JF, Stachulski AV. Syntheses and antibacterial activities of tizoxanide, an N-(nitrothiazolyl) salicyclamide, and its O-aryl glucuronide. J. Chem. Res. 1999; (S): 44-45.

Hemphill A, Mueller J, Esposito M. Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections. Exp. Opin. Pharmacother. 2006; 7: 953-964.

Fox LM, Saravolatz LD. Nitazoxanide: a new thiazolide antiparasitic agent. Clin. Infect. Dis. 2005; 40: 1173-1180.

Anderson VR, Curran MP. Nitazoxanide: a review of its use in the treatment of gastrointestinal infections. Drugs. 2007; 67: 1947-1967.

Van Den Enden E. Pharmacotherapy of helminth infection. Expert Opin. Pharmacother. 2009; 10: 435-451.

Dubey R. Impact of Nanosuspension technology on drug discovery and development. Drug Deliv. Technol. 2006; 6: 65-67.

Patel M, Shah A, Patel NM, Patel MR, Patel KR. Nano suspension: a novel approch for drug delivery system. The Pharma Innovation- Journal. 2011; 1(1): 1-10.

Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2002; 54: 631-651.

Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: A formulation approach for poorly-watersoluble compounds. Eur. J. Pharm. Sci. 2003; 18: 113-120.

Gherbawy YA, Shalaby IM, El-Sadek MSA, Elhariry HM, Banaja AA. The Anti-Fasciolasis Properties of Silver Nanoparticles Produced by Trichoderma harzianum and Their Improvement of the Anti-Fasciolasis Drug Triclabendazole. Int. J. Mol. Sci. 2013; 14: 21887-21898.

Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag CB, Kaya C, Kaya F, Rafailovich M. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int. J. Nanomed. 2011; 6: 2705-2714.

Hanser E, Mehlhorn H, Hoeben D, Vlaminck K. In vitro studies on the effects of flubendazole against Toxocara canis and Ascaris suum. Parasitol. Res. 2003; 89: 63-74.

Matadamas-Martínez F, Nogueda-Torres B, Hernández-Campos A, Hernández-Luis F, Castillo R, Mendoza, G., Ambrosio, J.R., Andrés-Antonio, G., Yépez-Mulia, L., 2013. Analysis of the effect of a 2-(trifluoromethyl)-1H-benzimidazole derivative on Trichinella spiralis muscle larvae. Vet. Parasitol. 2013; 194: 193-197.

Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM. In vitro and in vivo anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode, Trichuris muris. Parasitology. 2006; 132: 681-689.

Tritten, L, Silbereisen A, Keiser J. Nitazoxanide: In vitro and in vivo drug effects against Trichuris muris and Ancylostoma ceylanicum, alone or in combination. Int. J. Parasitol. Drugs Drug Resist. 2012; 2: 98-105.

Sahare KN, Singh V. In-vitro antifilarial activity of methanolic extract of Aegle marmelos Corr. Leaves. IAJPS. 2013; 3(6): 4567-4573.

Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 5th. Churchill Livingstone; 2002. p. 608-610.

Manneck T, Haggenmuller Y, Keiser J. Morphological effects and tegumental alterations induced by mefloquine on schistosomula and adult flukes of Schistosoma mansoni. Parasitology. 2010; 137: 85-98.

Saini P, Saha SK, Roy P, Chowdhury P, Santi P, Babu S. Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Exp. Parasitol. 2016; 160: 39-48.

Misra S, Singh DP, Murthy PK, Chatterjee RK. Mode of action of antifilarials: Modulation of immune adherence to microfilariae in vitro. Trop. Med. 1990; 32: 33-43.

Murthy PK, Chatterjee RK. Evaluation of two in vitro test systems employing Brugia malayi parasite for prescreening of potential antifilarials. Curr. Sci. 1999; 77(8): 1084-1089.

Kopp SR, Coleman GT, McCarthy JS, Kotze AC. Phenotypic characterization of two Ancylostoma caninum isolates with different susceptibilities to the anthelmintic pyrantel. Antimicrob. Agents Chemother. 2008; 52: 3980-3986.

Silbereisen A, Tritten L, Keiser J. Exploration of novel in vitro assays to study drugs against Trichuris spp. J. Microbiol. Methods. 2011; 87: 169-175.

Banu MJ, Nellaiappan K, Dhandayuthapani S. Intermediary carbohydrate metabolism in the filarial worm Setaria digitata. Int. J. Parasitol. 1991; 21: 795-799.

Bhandary YP, Krithika KN, Kulkarni S, Reddy MVR, Harinath BC. Detection of enzymes dehydrogenases and proteases in Brugia malayi filarial parasites. Indian J. Clin. Biochem. 2006; 21(1): 1-7.

Barrett J. Biochemistry of parasitic helminths. Macmillan Press, London; 1981. p. 308.

Saz ÇJ. Energy metabolism of parasitic helminths. Annu. Rev. Physiol. 1981; 43: 323-341.

Ward PFV. Aspects of helminth metabolism. Parasitology. 1982; 84: 177-194.

Rathaur S, Anwar N, Saxena JK, Ghatak S. Setaria cervi: enzymes in microfilariae and in vitro action of antifilarials. Z. Parasitenkd. 1982; 68(3): 331-338.

Middleton KR, Saz HJ. Comparative utilization of pyruvate by Brugia pahangi, Dipetalonema viteae, and Litomosoides carinii. J. Parasitol. 1979; 65(1): 1-7.

Omar MS, Raoof A, Ai-Amari OM. Onchocerca fasciata: enzyme histochemistry and tissue distribution of various dehydrogenases in the adult female worm. Parasitol. Res. 1996; 82: 32-37.

Walter RD, Albiez EJ. Phosphoenolpyruvate carboxykinase from Onchocerca volvulus and O. gibsoni. Trop. Med. Parasitol. 1986; 37: 356-358.

Dunn TS, Raines PS, Barrett J, Butterworth PE. Carbohydrate metabolism in Onchocerca gutturosa and Onchocerca lienalis (Nematoda: Filarioidea). Int. J. Parasitol. 1988; 18: 21-26.

Anwar N, Srivastava AK, Ghatak S. Effect of antifilarials on the metabolic activity of Setaria cervi. Ind. J. Parasitol. 1978; 2: 101-105.

Rathaur S, Awar N, Chatterjee RK, Ghatak S. Metabolic pattern of the microfilariae of Setaria cervi and Litomosoides carinii. Indian J. Parasitol. 1980; 4: 67-69.

Zakai HA, Khan W. Effects of filaricidal drugs on longevity and enzyme activities of the microfilariae of Setaria cervi in white rats. Asian Pac. J. Trop. Biomed. 2015; 5(9): 714-719.

Peixoto CA, Alvesa LC, Braynera FA, Floreˆnciob MS. Diethylcarbamazine induces loss of microfilarial sheath of Wuchereria bancrofti. Micron. 2003; 34: 381-385.

Chandrashekar R, Rao UR, Subrahmanyam D. Effect of diethylcarbamazine on serum-dependent cell-mediated immune reactions to microfilariae in vitro. Tropenmed. Parasitol. 1984; 35: 177-182.

Ottesen EA. The action of diethylcarbamazine on adult worms of the lymphatic-dwelling filariae Wuchereria bancrofti, Brugia malayi and Brugia timori in man, WHO/ FIL/84. 1984; 174: 1-24.

Tippawangkoso P, Choochote W, Na-Bangchang K, Jitpakdi A, Pitasawat B, Riyong D. The in vitro effect of albendazole, ivermectin, diethylcarbamazine, and their combinations against infective third-stage larvae of nocturnally subperiodic Brugia malayi (Narathiwat strain): scanning electron microscopy. J. Vec. Eco. 2004; 29(1): 101-108.

Walker M, Rossignol JF, Torgerson P, Hemphill A. In vitro effects of nitazoxanide on Echinococcus granulosus protoscoleces and metacestodes. J. Antimicrob. Chemother. 2004; 54: 609-616.

Rao RU, Huang Y, Fischer K, Fischer PU, Weil GJ. Brugia malayi: Effects of nitazoxanide and tizoxanide on adult worms and microfilariae of filarial nematodes. Exp. Parasitol. 2009; 121: 38-45

Kim SW, Nam SH, An YJ. Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Eco. toxicol. Environ. Saf. 2012; 77: 64-70.

Mahmoud WM, Abdelmoneim TS, Elazzazy AM. The impact of silver nanoparticles produced by Bacillus pumilus as antimicrobial and nematicide. Front. Microbiol. 2016; 7: 1-9.

Files
IssueVol 13 No 3 (2018) QRcode
SectionOriginal Article(s)
Keywords
Efficacy Anthelmintics Nanocomposite TCA cycle enzymes Setaria cervi

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
KAUSAR S, KHAN W. Comparative Efficacy of Diethylcarbamazine, Nitazoxanide and Nanocomposite of Nitazoxanide and Silver Nanoparticles on the Dehydrogenases of TCA Cycle in Setaria cervi, in Vitro. Iran J Parasitol. 2018;13(3):399-405.