Original Article

Assessment of the Effects of Extremely Low Frequency Electromagnetic Fields on Toxoplasma gondii

Abstract

Background: The effects of extremely low frequency electromagnetic fields (ELF-EMF) on Toxoplasma gondii have not been explained yet. The aim of this study was to assess the possible effects of ELF-EMF on growth, survival time and viability of Toxoplasma gondii. In addition, the life span of Toxoplasma infected animals was investigated.

Methods: Sixty adult male BALB/c mice were used for in vivo and in vivo experiments in Laboratory of Biopyhsics and Parasitology of Medical Faculty, Adnan Menderes University, Turkey, in 2010. During in vivo experiments, pulsed and continuous EMFs were applied for 5 d to the infected mice. During in vivo experiments, pulsed and continuous EMF was applied to the tachyzoites within peritoneal exudates for 8 h/d at 4 °C and the tachyzoites were then injected to mice. In both experiments, the number of T. gondii in peritoneal exudates was counted and T. gondii protein bands patterns were investigated with polyacrylamide gel electrophoresis and Western Blotting.

Results: Pulsed and continuous EMF exposure reduced the number of T. gondii tachyzoites in comparison to controls. However, no statistically significant differences were observed at the patterns of protein bands among the samples.

Conclusion: EMF exposure induces a decrease in the number of T. gondii. Further studies are required to understand the mechanism of EMF on intracellular parasites.

Dubey JP. The History of Toxoplasma gondii-The First 100 Years. J Eukaryot Microbiol. 2008; 55(6):467–475.

Johynson DH, Wreghitt TJ Toxoplasmosis: A comprehensive clinical guide. Cambridge University Press, UK. 2001.

Frey AH. Electromagnetic field interactions with biological systems. FASEB J. 1993; 7(2):272-281.

Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J. 1992; 6(13):3177-3185.

Adey WR. Cell membranes: the electromagnetic environment and cancer promotion. Neurochem Res.1988; 13(7):671-677.

Tenforde TS. Biological interactions of extremely low frequency electric and magnetic fields. Bioe-lectrochem Bioenergetic. 1991; 25(1):1-17.

Liburdy RP. Cellular studies and interaction mechanisms of extremely low frequency fields. Radio Sci. 1995; 30(1):179-203.

Ramstad S, Futsaether CM, Johnsson A. Effects of 50 Hz electric currents and magnetic fields on prokaryote Propionibacterium acnes. Bioelectromag-netics. 2000; 21(4):302-311.

Shapiro-Ilan DI, Campbell JF, Lewis EE, Elkon JM, Kim-Shapiro DB. Directional movement of steinernematid nematodes in responce to electrical current. J Invertebr Pathol. 2009;100 (2):134-7.

Miyakawa T, Yamada S, Harada S, Ishimori T, Yamamoto H, Hosono R. Exposure of Caeno-rhabditis elegans to extremely low frequency high magnetic fields induces stress responses. Bioelec-tromagnetics. 2001; 22(5):333-339.

Hemmersbach R, Becker E, Stockem W. Influence of extremely low frequency electromagnetic fields on the swimming behavior of ciliates. Bioe-lectromagnetics.1997; 18(7):491-498.

Fojt L, Strasak L,Vetterl V, Smarda J. Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococus aureus. Bioelectrochemistry. 2004; 63(1-2):337-341.

Strasak L, Vetter V, Smarda J. The effect of low-frequency electromagnetic fields on living organ-isms. Sbornik Lekarsky. 1998; 99(4):455-464.

El-Sayed AG, Magda HS, Eman YT, Mona HI. Stimulation and control of E.coli by using an extremely low frequency magnetic field. Romanian J Biophys. 2006; 16(4): 283-296.

Johnson AM, Mcdonald PJ, Neoh SH. Kinetics of the growth of Toxoplasma gondii (RH strain ) in mice. Int J Parasitol. 1979; 9(1):55-56.

Degerli K, Kilimcioglu AA, Kurt O, Tamay AT, Ozbilgin A. Efficacy of azithromycin in a murine toxoplasmosis model, employing a Toxoplasma gondii strain from Turkey. Acta Trop. 2003; 88(1):45–50.

Doskaya M, Degirmenci A, Cicek C, Ak M, Korkmaz M, Gürüz Y, Uner A. Behaviour of Toxoplasma gondii RH Ankara strain tachyzoites during continuous production in various cell lines. Parasitology. 2006; 132(3):315–319.

Mineo JR, McLeod R, Mack D, Smith J, Khan IA, Ely KH, Kasper LH. Antibodies to Toxoplasma gondii major surface protein (SAG1, p30) inhibit infection of host cells and are produced in murine intestine after peroral infection. J Immunol. 1993; 150(9): 3951-3964.

Parmley SF, Sgarlato GD, Mark J, Prince JB, Re-mington JS. Expression,characterization,and sero-logic reactivity ofrecombinant surface antigen p22 of Toxoplasma gondii. J Clin Microbiol. 1992; 30(5): 1127-1133.

Khanalihal K, Motazedian MH , Sarkari B, Bandehpour M, Sharifnia Z, Kazemi B. Expres-sion and Purification of P43 Toxoplasma gondii Sur-faceAntigen. Iran J Parasitol. 2012; 7(3).48-53.

Cesbron-Delauw MF. Dense granule organelles of Toxoplasma gondii: their role in the host-parasite relationship. Parasitol Today. 1994; 10(8): 293-296.

Sam-Yellowe TY. Rhoptry organelles of the Apicomplexa: their role in host cell invasion and intracellular survival. Parasitol Today.1996;12(8): 308-316.

Bayır E, Bilgi E, Sendemir-Ürkmez A, Hameş-Kocabaş EE. The effects of different intensities, frequencies and exposure times of extremely low-frequency electromagnetic fields on the growth of Staphylococcus aureus and Escherichia coli O157:H7. Electromagn Biol Med. 2015 Mar;34(1):14-8.

Amorali A, Trielli F, Bianco B, Giordano S, Moggia E, Corrado MU. Effects of a 50 Hz Magnetic Field on Dictyostelium discoideum (Protista). Bioelec-tromagnetics.2006; 27(7):528-534.

Pica F, Serafino A, Divizia M, Donia D, Fraschetti M, Sinibaldi-Salimei P, Giganti MG, Volpi A. Effects of extremely low frequency electromagnetic fields (ELF-EMF) on Kaposi’s sarcoma associated herpes virus in BCBL-1 cells. Bioelectromagnetics. 2006; 27(3): 226-232.

Rodriquez-DE la Fuente AO, Heredia-Rojas JA, Mata-Cardenas BD, Vargas-Villarreal J, Rodríguez-Flores LE, Balderas-Candanosa I, Alcocer-González JM. Entamoeba invadens: Influence of 60 Hz magnetic fields on growth and differentiation. Exp Parasitol. 2008; 119(2):202-206.

Nakaoka Y, Takeda R, Shimizu K. Orientation of Paramecium Swimming in a DC Magnetic Field. Bioelectromagnetics. 2002; 23(8):607-613.

Segatore B, Setacci D, Bennato F, Cardigno R, Amicosante G, Iorio R. Evaluations of the Effects of Extremely Low-Frequency Electromagnetic Fields on Growth and Antibiotic Susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int J Microbiol. 2012; doi:10.1155/2012/587293.

Inhan-Garip A, Aksu B, Akan Z, Akakin D, Ozaydin AN, San T. Effect of extremely low fre-quency electromagnetic fields on growth rate and morphology of bacteria. Int J Radiat Biol. 2011;87 (12):1155-1161.

Mairs RJ, Hughes K, Fitzsimmons S, Prise KM, Livingstone A, Wilson L, Baig N, Clark AM, Timpson A, Patel G, Folkard M, Angerson WJ, Boyd M. Microsatellite analysis for determination of the mutagenicity of extremely low-frequency electromagnetic fields andionising radiation in vitro. Mutation Research. 2007; 10:626(1-2):34-41.

Winker R, Ivancsits S, Pilger A, Adlkofer F, Rüdiger HW. Chromosomal damage in human diploid fibroblasts by intermittent exposure to extremely low-frequency electromagnetic fields. Mutat Res. 2005; 585(1-2): 43-49.

Nakasono S, Saiki H. Effect of ELF magnetic fields on protein synthesis in Escherichia coli K12. Radiat Res. 2000; 154(2):208-16.

Nakasono S, Laramee C, Saiki H, McLeod KJ. Effect of power-frequency magnetic fields on ge-nome-scale gene expression in Saccharomyces cerevisiae. Radiat Res. 2003;160(1):25-37.

Sinclair J, Weeks M, Butt A, Worthington JL, Akpan A, Jones N, Waterfield M, Allanand D, Timms JF. Proteomic response of Schizosaccha-romyces pombe to static and oscillating extremely low-frequency electromagnetic fields. Proteomics. 2006; 6(17):4755-64.

Goodman R, Chizmadzhev Y, Shirley-Henderson A. Electromagnetic fields and cells. J Cell Biochem. 1993; 51(4):436-41.

Nakaoka Y, Shimizu K, Hasegawa K, Yamamoto T. Effect of a 60 Hz Magnetic field on the behavior of Paramecium. Bioelectromagnetics. 2000; 21(8): 584-588.

Dihel LE, Smith-Sonneborn J, Middaugh CR. Effects of an extremely low frequency electro-magnetic field on the cell division rate and plasma membrane of Paramecium tetraurella. Bioelectro-magnetics. 1985; 6(1):61-71.

Delgado JMR. Biological effects of extremely low frequency electromagnetic field. J Bioelectricity. 1985; 4(1):75-92.

Graham, JH, Fletcher D, Tigue J, McDonald M. Growth and developmental stability of Drosophila melanogaster in low frequency magnetics fields. Bi-oelectromagnetics. 2000; 21(6):465-472.

Fojt L, Klapetek P, Strasak L, Vetterl V. 50 Hz magnetic field effect on the morphology of bacteria. Micron. 2009; 40(8):918-922.

Ahmed I, Istivan T, Cosic I, Pirogova E. Evalution of the effects of Extremely Low Frequency (ELF) Pulsed Electromagnetic Fields (PEMF) on survival of the bacterium Staphylococus aureus. EPJ Nonlinear Biomedical Physics. 2013; 1:5.

Elmusharaf MA, Cuppen JJ, Grooten HNA, Beynen AC. Antagonistic effect of electromagnetic field exposure on coccidiosis infection in broiler chickens. Poult Sci. 2007; 86(10): 2139-2143.

Blank M, Goodman R. Electromagnetic initiation of transcription at specific DNA sites. J Cell Bio-chem. 2001; 81(4):689-692.

Kariya T, Hori T, Harakawa S, Inoue N, Nagasawa H. Exposure to 50-Hz electric fields on stress response initiated by infection with the protozoan parasite, Toxoplasma gondii, in mice. J Protozool Res. 2006; 16:51-59.

Files
IssueVol 11 No 2 (2016) QRcode
SectionOriginal Article(s)
Keywords
Electromagnetic field Mice Polyacrylamide gel elec-trophoresis Toxoplasma gondii Western Blotting

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
OZLEM-CALISKAN S, ERTABAKLAR H, BILGIN MD, ERTUG S. Assessment of the Effects of Extremely Low Frequency Electromagnetic Fields on Toxoplasma gondii. Iran J Parasitol. 2016;11(2):159-167.