Iranian Journal of Parasitology 2014. 9(2):239-248.

Leishmaniasis in Turkey: Determination of Leishmania Species by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS).
Gülnaz Culha, Isin Akyar, Fadile Yildiz Zeyrek, Özgür Kurt, Cumhur Gündüz, Seray Özensoy Töz, Ipek Östan, Ibrahim Cavus, Burcu Gülkan, Tanil Kocagöz, Yusuf Özbel, Ahmet Özbilgin


Background: Cutaneous leishmaniasis (CL) is endemic in Southeastern Anatolia, mainly in Sanliurfa and Hatay provinces, and the causative agents are mostly Leishmania tropica and less frequently L. infantum. Here, we report the first MAL-DI-TOF analyses of Leishmania promastigotes obtained from the cultures of two CL cases from Osmaniye and Hatay provinces who were initially diagnosed by microscopy, culture and identified as L. infantum with Real-Time PCR (RT-PCR).

Methods: Samples obtained from the skin lesions of patients were initially stained with Giemsa and cultivated in NNN medium. Examination of the smears and cultures revealed Leishmania amastigotes and promastigotes, respectively. The promastigotes (MHOM/TR/2012/CBU15 and MHOM/TR/2012/MK05) ob-tained from the cultures of both patients were used for RT-PCR targeting the ITS-1 region in the SSU of rRNA. The reference strains of four Leishmania spe-cies (L. infantum, L. donovani, L. tropica and L. major) were initially assessed with MALDI-TOF and their data were added to MALDI-TOF Biotyper Library.

Results: Both RT-PCR and MALDI-TOF analyses indicated that the causative agent in both patient samples was L. infantum.

Conclusion: Despite disadvantages such as requirement of culture fluid with nothing but promastigotes and high cost, MALDI-TOF analysis may be a fast, sensitive and specific diagnostic tool in especially large-scale research studies, where the cost declines, relatively.


Cutaneous leishmaniasis; Leishmania infantum; MALDI -TOF; Real-Time PCR; Turkey

Full Text:



Özbel Y, Özensoy Töz S. Leishmaniosis. In: Ozcel MA. Tıbbi Parazit Hastaliklari (Medical Parasitic Diseases). Izmir: Meta Basim Matbaa-cilik Hizmetleri, 2007. P. 197-244.

World Health Organization. Report of the Sci-entific Working Group on Leishmaniasis. Ge-neva: World Health Organization. 2004; 5–6.

Ok UZ, Balcioğlu IC, Taylan Ozkan A, Ozen-soy S, Ozbel Y. Leishmaniasis in Turkey. Acta Tropica. 2002; 84: 43–48.

Akman L, Aksu HS, Wang RQ, Ozensoy S, Ozbel Y, Alkan Z, Ozcel MA, Culha G, Ozcan K, Uzun S, Memisoglu HR, Chang KP. Multi-site DNA polymorphism analyses of Leishmania isolates define their genotypes predicting clini-cal epidemiology of leishmaniasis in a specific region. J Eukaryot Microbiol. 2000; 47(6): 545-554.

Culha G, Uzun S, Ozcan K, Memisoglu HR, Chang KP. Comparison of conventional and polymerase chain reaction diagnostic tech-niques for leishmaniasis in the endemic region of Adana, Turkey. Int J Dermatol. 2009; 45: 569–572.

Serin MS, Waki K, Chang KP, Aslan G, Dire-kel S, Otag F, Kayar B, Koksal F, Emekdas G. Consistence of mini exon polymerase chain re-action restriction fragment length polymor-phism and single-copy gene sequence analyses in discriminating Leishmania genotypes. Diagn Microbiol Infect Dis. 2007; 57(3): 295-299.

Gürel MS, Yeşilova Y, Ölgen MK, Özbel Y. Cutaneous leishmaniasis in Turkey. Acta Para-sitol Turcica. 2012, 36: 121-129.

Uzun S, Uslular C, Yücel A. Cutaneous leish-maniasis: evaluation of 3074 cases in the Cuku-rova region of Turkey. Br J Dermatol. 1999; 140: 347–350.

Akcali C, Culha G, Inaloz H, Savas N, Onlen Y, Savas L. Cutaneous leishmaniasis in Hatay. J Turk Acad Dermatol. 2007; 1: 1-5.

Anhalt JP, Fenselau C. Identification of bacte-ria using mass spectrometry. Anal Chem. 1975; 47: 219-225.

Fox A. Mass spectrometry for species or strain identification after culture or without culture: Past, present, and future. J Clin Microbiol. 2006; 44, 8: 2677-2680.

Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol. 1996; 14 (11): 1584-1586.

Krishnamurthy T, Ross PL. Rapid identification of bacteria by direct matrix-assisted laser de-sorption/ionization mass spectrometric analysis of whole cells. Commun Mass Spectrom. 1996; 10: 1992-1996.

Seng P, Drancourt M, Gouriet F, La SB, Four-nier PE, Rolain JM, Raoult D. Ongoing revolu-tion in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ion-ization time-of-flight mass spectrometry. Clin Infect Dis. (2009), 49: 543–551.

Selman Maurice HJ, Hoffmann M, Zauner G, McDonnell Liam A, Balog CIA, Rapp E, An-dre M. MALDI-TOF-MS analysis of sialylated glycans and glycopeptides using 4-chloro-cyanocinnamic acid matrix. Proteomics. 2012; 12: 1337–1348.

Wahl KL, Wunschel SC, Jarman KH Valentine NB, Petersen CE, Kingsley MT, Zartolas KA Saen A.J. Analysis of microbial mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2002; 74: 6191–6199.

Van Veen S, Claas ECJ, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) in rou-tine medical microbiology laboratory. J Clin Microbiol. 2010; 48(3): 900-907.

Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spec-trometry. Mass Spectrom Rev. 2001; 20 (4): 157-171.

Lay JO Jr. MALDI-TOF mass spectrometry of bacteria. Mass Spectrum Rev. 2001; 20(4): 172-194.

el Tai NO, Osman OF, el Fari M, Presber W, Schönian G. Genetic heterogeneity of riboso-mal internal transcribed spacer in clinical sam-ples of Leishmania donovani spotted on filter pa-per as revealed by single-strand conformation polymorphisms and sequencing. Trans R Soc Trop Med Hyg. 2000; 94(5): 575-579.

Ozensoy Toz S, Culha G, Yıldız Zeyrek F, Ertabaklar H, Alkan MZ, Tetik Vardarlı A, Gunduz C, Ozbel Y. A real-time ITS1-PCR based method in the diagnosis and species identification of Leishmania parasite from hu-man and dog clinical samples in Turkey. PLOS Negl Dis. 2013; 7(5): e2205 (1-8).

Pratlong F, Dereure J, Ravel C, Lami P, Balard Y. Geographical distribution and epidemiologi-cal features of Old World cutaneous leishmani-asis foci, based on the isoenzyme analysis of 1048 strains. Trop Med Int Health. 2009; 14: 1071-1085.

Vega-Lopez F. Diagnosis of cutaneous leish-maniasis. Curr Opin Infect Dis. 2003; 16: 97–101.

Schönian G, Schnur L, el Fari M, Oskam L, Kolesnikov AA. Genetic heterogeneity in the species Leishmania tropica revealed by different PCR-based methods. Trans R Soc Trop Med Hyg. 2001; 95: 217-224.

Schönian G, Fari ME, Lewin S, Schweynoch C, Presber W. Molecular epidemiology and popu-lation genetics in Leishmania. Med Microbiol Immunol. 2001; 190: 61-63.

Schönian G, Nasereddin A, Dinse N, Schweynoch C, Schallig HDFH. PCR diagno-sis and characterization of Leishmania in local and imported clinical samples. Diag Microbiol Infect Dis. 2003; 47: 349–358.

Nasereddin A, Bensoussan-Hermano E, Scho-nian G, Baneth G, Jaffe CL. Molecular diagno-sis of Old World cutaneous leishmaniasis and species identification by use of a reverse line blot hybridization assay. J Clin Microbiol. 2008; 46: 2848–2855.

Talmi-Frank D, Jaffe CL, Nasereddin A, War-burg A, King R. Leishmania tropica in rock hy-raxes (Procavia capensis) in a focus of human cu-taneous leishmaniasis. Am J Trop Med Hyg. 2010; 82: 814–818.

Dea-Ayuela MA, Rama-Iñiguez S, Bolás-Fernández F. Proteomic analysis of antigens from Leishmania infantum promastigotes. Prote-omics. 2006; 6(14): 4187-4194.

Concu R, Dea-Ayuela MA, Perez-Montoto LG, Bolas-Fernández F, Prado-Prado FJ, Podda G, Uriarte E, Ubeira FM, González-Díaz H. Pre-diction of enzyme classes from 3D structure: a general model and examples of experimental-theoretic scoring of peptide mass fingerprints of Leishmania proteins. J Proteome Res. 2009; 8(9):4372-4382.

Gupta SK, Sisodia BS, Sinha S, Hajela K, Naik S, Shasany AK, Dube. A proteomic approach for identification and characterization of novel immunostimulatory proteins from soluble anti-gens of Leishmania donovani promastigotes. Pro-teomics. 2007; 7(5): 816-823.

El Fakhry Y, Ouellette M, Papadopoulou B. A proteomics approach to identify developmen-tally-regulated proteins in Leishmania infantum. Proteomics. 2002; 2(8): 1007–1017.

Bente M, Harder S, Wiesgigl M, Heukeshoven J, Gelhaus C, Krause E, Clos J, Bruchhaus I. Developmentally-induced changes of the pro-teome in the protozoan parasite Leishmania do-novani. Proteomics. 2003; 3(9): 1811–1829.

Atwood JA 3rd, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, Orlando R, Tarleton RL. The Trypanosoma cruzi proteome. Science. 2005; 309 (5733): 473-476.

Marks F, Meyer CG, Sievertsen J, Timmann C, Evans J, Horstmann RD, May J. Genotyping of Plasmodium falciparum pyrimethamine re-sistance by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Antimicrob Agents Chemother. 2004; 48(2): 466-72.

Martiny D, Bart A, Vandenberg O, Verhaar N, Wentink-Bonnema E, Moens C, van Gool T. Subtype determination of Blastocystis isolates by matrix- assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Eur J Clin Microbiol Infect Dis.2013; Sep 27. [Epub ahead of print].

Cassagne C, Pratlong F, Jeddi F, Benikhlef R, Aoun K, Normand AC, Faraut F, Bastien P, Piarroux R. Identification of Leishmania at the species level with matrix-assisted laser desorp-tion ionization time-of-flight mass spectrome-try. Clin Microbiol Infect. 2013; Sep 5. doi: 10.1111/1469-0691.12387. [Epub ahead of print]

Kumar A, Misra P, Sisodia B, Shasany AK, Sundar S, Dube A. Mass spectrometry based proteomic analysis of Leishmania donovani solu-ble proteins in Indian clinical isolate. Pathog Dis. 2013; Oct 1. doi: 10.1111/2049-632X.12103. [Epub ahead of print].


  • There are currently no refbacks.

Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.