Characterization of Specific RAPD Markers of Virulence in Tri-chomonas vaginalis Isolates

  • Jorge FRAGA Dept. of Parasitology, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba
  • Lázara ROJAS Dept. of Parasitology, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba
  • Idalia SARIEGO Dept. of Parasitology, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba
  • Aymé FERNÁNDEZ-CALIENES Dept. of Parasitology, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba
Keywords: Trichomonas vaginalis, RAPD, Virulence marker, Tri-chomonas vaginalis virus

Abstract

Background: As for human trichomoniasis the host-parasite relationship is very complex, and the broad ranges of clinical symptoms are unlikely be attributable to a single pathogenic mechanism. Specific Random Amplified Polymorphic DNA (RAPD) markers of 490 bp, 720 bp and 460 bp using the primers Tv-5, OPA-6 and OPA-11, respectively, were reported. This was the first description of possible ge­netic virulence markers of the infection by T. vaginalis. The aim of this study was to characterize the specific RAPD markers in order to elucidate their importance on virulence of this illness.Methods: The selected specific RAPD fragments were cloned and sequenced. The obtained sequences were compared by the BLAST algorithm.Results: The nucleotide sequence of the Tv-5490 RAPD marker exhibited signifi­cant similarity to T. vaginalis hypothetical G3 leucine rich repeat (LRR) family pro­tein (e-value: 6e-14) and Giardia lamblia leucine rich repeat protein 1 virus receptor protein (e-value: 6e-14 and 2e-12) ; however, the OPA-6720 and OPA-11460 showed no significant similarity with any coding published sequence. All the evaluated strains showed the presence of the LRR gene.Conclusion: These results demonstrate a possible role of this gene in the viru­lence of T. vaginalis and in the parasite infection with Trichomonas virus as a possible virus receptor. Further analysis of this gene and encoded protein will allow determin­ing the role that they play in the isolates virus susceptible or resistant pheno­types.

References

World Health Organization. Baseline report on global sexually transmitted infection surveil-lance 2012. WHO, Geneva; 2013.

Cotch MF, Pastorek JG, 2nd Nugent RP, Hill-ier SL, Gibbs RS, Martin DH, Eschenbach D A, Edelman R, Carey JC, Regan JA, Krohn MA, Klebanoff MA, Rao AV, Rhoads GG. Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal In-fections and Prematurity Study Group. Sex Transm Dis. 1997; 24: 353-360.

Wang AL, Wang CC. Viruses of the protozoa. Annu Rev Microbiol. 1991; 45: 251-263.

Laga M, Alary M, Nzila N, Manoka AT, Tuliza M, Behets F, Goeman J, St Louis M, Piot P. Condom promotion, sexually transmitted dis-ease treatment, and declining incidence of HIV-1 infection in female Zairian sex work. Lancet. 1994; 344: 246-248.

Viikki M, Pukkala E, Nieminen P, Hakama M. Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta Oncol. 2000; 39: 71-75.

Petrin D, Delgaty K, Bhatt R, Garber G. Clini-cal and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev. 1998; 11: 300-317.

Sood S, Kapil A. An update on Trichomonas vaginalis. Indian J Sex Transm Dis. 1998; 29: 8-14.

Mitchelson KR, Drenth J, Duong H, Chaparro JX. Direct sequencing of RAPD fragments us-ing 3'-extended oligonucleotide primers and dye terminator cycle-sequencing. Nucleic Acids Res. 1999; 27: e28.

Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms ampli-fied by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990; 18: 6531-6535.

Welsh J, Mc Clelland M. Fingerprinting ge-nomes using PCR with arbitrary primers. Nu-cleic. Acids Res. 1990; 18: 7213-7218.

Vanacova S, Tachezy J, Kulda J, Flegr J. Char-acterization of trichomonad species and strains by PCR fingerprinting. J Eukaryot Microbiol. 1997; 44: 545-552.

Snipes LJ, Gamard PM, Narcisi EM, Beard CB, Lehmann T, Secor WE. Molecular epidemiol-ogy of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. J Clin Microbiol. 2000; 38: 3004-3009.

Hampl V, Vanacova S, Kulda J, Flegr J. Con-cordance between genetic relatedness and phe-notypic similarities of Trichomonas vaginalis strains. BMC Evol Biol. 2001; 1: 11.

Rojas L, Fraga J, Sariego I. Genetic variability between Trichomonas vaginalis isolates and corre-lation with clinical presentation. Infect Genet Evol. 2004; 4: 53-58.

Xiao JC, Xie LF, Fang SL, Gao MY, Zhu Y, Song LY, Zhong HM, Lun ZR. Symbiosis of Mycoplasma hominis in Trichomonas vaginalis may link metronidazole resistance in vitro. Parasitol Res. 2006; 100:123-130.

Fraga J, Rojas L, Sariego I, Nuñez FA. Species typing of Cuban Trichomonas vaginalis virus by RT-PCR, and association of TVV-2 with high parasite adhesion levels and high pathogenicity in patients. Arch Virol. 2012; 157: 1789-1795.

Kaul P, Gupta I, Sehgal R, Malla N. Trichomonas vaginalis: random amplified polymorphic DNA analysis of isolates from symptomatic and asymptomatic women in India. Parasitol Int. 2004; 53:255-262.

Fraga J, Rojas L, Sariego I, Fernandez-Calienes A. Double-stranded RNA viral infection of Trichomonas vaginalis and correlation with genetic polymorphism of isolates. Exp Parasitol. 2011;127: 593-599.

Meade JC, de Mestral J, Stiles JK, Secor WE, Finley RW, Cleary JD, Lushbaugh WB. Ge-netic diversity of Trichomonas vaginalis clinical isolates determined by EcoRI restriction frag-ment length polymorphism of heat-shock pro-tein 70 genes. Am J Trop Med Hyg. 2009; 80: 245-251.

Fraga J, Rojas L, Sariego I, Fernández-Calienes A, Núñez FA. Double stranded RNA viral in-fection of Trichomonas vaginalis and association with clinical presentation. Acta Protozool. 2007; 46: 93–98.

Diamond LS, Harlow DR, Cunnick CC. A new medium for the axenic culture of Entoa-moeba histolytica and other Entamoeba. Trans R Soc Trop Med and Hyg 1978; 72: 431-432.

Fraga J, Rojas L, Sariego I, Fernandez-Calienes A. Double-stranded RNA viral infection in Cu-ban Trichomonas vaginalis isolates. Braz J Infect Dis. 2005; 9: 521-524.

Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evolution. 2007; 24: 1596-1599.

Alstschuld SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new gen-eration of protein database search programs. Nucleic Acids Res. 1997; 25: 3389–402.

Hsiang T, Baillie DL. Comparison of the yeast proteome to other fungal genomes to find core fungal genes. J. Mol. Evol. 2005; 60: 475-483.

Vogel C, Chothia C. Protein family expansions and biological complexity. PLoS Comput Biol. 2006; 2: e48.

Hirt RP, Noel CJ, Sicheritz-Ponten T, Tachezy J, Fiori PL. Trichomonas vaginalis surface proteins: a view from the genome. Trends Parasitol. 2007; 23:540-547.

Kajava AV, Kobe B. Assessment of the ability to model proteins with leucine-rich repeats in light of the latest structural information. Pro-tein Sci. 2002; 11: 1082-1090.

Ikegami A, Honma K, Sharma A, Kuramitsu HK. Multiple functions of the leucine-rich re-peat protein LrrA of Treponema denticola. Infect Immun. 2004; 72: 4619-4627.

Kedzierski Ł, Montgomery J, Curtis J, Hand-man E. Leucine-rich repeats in host-pathogen interactions. Arch Immunol Ther Exp (Warsz). 2004; 52: 104-112.

Noël CJ, Diaz N, Sicheritz-Ponten T, Safa-rikova L, Tachezy J, Tang P, Fiori PL, Hirt RP. Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity from struc-tural organisation and transcriptomics. BMC Genomics. 2010; 11: 99.

Harp DF, Chowdhury I. Trichomoniasis: eval-uation to execution. Eur J Obstet Gynecol Re-prod Biol. 2011; 157: 3-9.

Wang AL, Wang CC. The double stranded RNA in Trichomonas vaginalis may originate from virus like particles. Proc Natl Acad Sci USA. 1986; 83: 7956- 7960.

Tai JH, Su HM, Tsai J, Shaio MF, Wang CC. The divergence of Trichomonas vaginalis virus RNAs among various isolates of Trichomonas vaginalis. Exp Parasitol. 1993; 76: 278-286.

Sepp T, Wang AL, Wang CC. Giardiavirus-re-sistant Giardia lamblia lacks a virus receptor on the cell membrane surface. J Virol. 1994; 68: 1426-1431.

Wang A, Wang CC, Alderete JF. Trichomonas vaginalis phenotypic variation occurs only among trichomonads infected with the double-stranded RNA virus. J Exp Med. 1987; 166: 142-150.

Provenzano D, Khoshnan A, Alderete JF. In-volvement of dsRNA virus in the protein composition and growth kinetics of host Trichomonas vaginalis. Arch Virol. 1997; 142: 939-952.

Fichorova RN, Lee Y, Yamamoto HS, Takagi Y, Hayes GR, Goodman RP, Chepa-Lotrea X, Buck OR, Murray R, Kula T, Beach DH, Singh

BN, Nibert ML. Endobiont Viruses Sensed by the Human Host – Beyond Conventional An-tiparasitic Therapy. PLoS ONE. 2012; 7: e48418.

Parent KN, Takagi Y, Cardone G, Olson NH, Ericsson M, Yang M, Lee Y, Asara JM, Fichorova RN, Baker TS, Nibert ML. Structure of a protozoan virus from the human genitou-rinary parasite Trichomonas vaginalis. MBio 2013; 4:e00056-13.

Published
2015-10-17
How to Cite
1.
FRAGA J, ROJAS L, SARIEGO I, FERNÁNDEZ-CALIENES A. Characterization of Specific RAPD Markers of Virulence in Tri-chomonas vaginalis Isolates. IJPA. 10(3):448-56.
Section
Original Article(s)