Interleukin-18 Antagonism Improved Histopathological Condi¬tions of Malaria Infection in Mice

  • Marzieh JABBARZARE Dept. of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Voon Kin CHIN Dept. of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Herni TALIB Dept. of Pathology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Mun Fei YAM School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
  • Siti Khadijah ADAM Dept. of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Haniza HASSAN Dept. of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Roslaini ABDUL MAJID Dept. of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia,Selangor, Malaysia
  • Che Norma MAT TAIB Dept. of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Mohamad Aris MOHD MOKLAS Dept. of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Mohamad TAUFIK HIDAYAT Dept. of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Hasidah MOHD SIDEK School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia
  • Rusliza BASIR Dept. of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
Keywords: Malaria, Interleukin-18, Plasmodium berghei, Histopathology

Abstract

Background: Interleukin 18 (IL-18) exerts pleiotropic roles in many inflammatory-related diseases including parasitic infection. Previous studies have demonstrated the promising therapeutic potential of modulating IL-18 bioactivity in various pathologi­cal conditions. However, its involvement during malaria infection has yet to be established. In this study, we demonstrated the effect of modulating IL-18 on the histopathological conditions of malaria infected mice.Methods: Plasmodium berghei ANKA infection in male ICR mice was used as a model for malaria infection. Modulation of IL-18 release was carried out by treat­ment of malarial mice with recombinant mouse IL-18 (rmIL-18) and recombinant mouse IL-18 Fc chimera (rmIL-18Fc) intravenously. Histopathological study and analysis were performed on major organs including brain, liver, spleen, lungs and kidney.Results: Treatment with rmIL-18Fc resulted in significant improvements on the histopathological conditions of the organs in malaria-infected mice.Conclusion: IL-18 is an important mediator of malaria pathogenesis and targeting IL-18 could prove beneficial in malaria-infected host.

References

Perlmann P, Troye-Blomberg M. Malaria blood-stage infection and its control by the immune system. Folia Biol-Prague. 2000; 46(6):210-18.

Lee KS, Divis PCS, Zakaria SK, Matusop A, Julin RA, Conway DJ, Cox-Singh J, Singh B. Plasmodium knowlesi: Reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathog. 2011; 7(4): e1002015. doi: 10.1371/ journal.ppat.1002015. Epub 2011 Apr 7.

Hunt NH, Grau GE. Cytokines: Accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 2003; 24(9):491-9.

Schofield L, Grau GE. Immunological processes in malaria pathogenesis. Nat Rev Immunol. 2005; 5(9):722-35.

Dinarello CA. IL-18: A Th1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol. 1999; 103(1):11-24.

Nakamura K, Okamura H, Wada M, Nagata K, Tamura T. Endotoxin-induced serum factor that stimulates gamma interferon production. Infect Immun. 1989; 57(2): 590-95.

Okamura H, Tsutsui H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature. 1995; 378(6552): 88-91.

Yoshimoto T, Takeda K, Tanaka T, Ohkusu K, Kashiwamura S, Okamura H, Akira S, Nakanishi K. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: Synergism with IL-18 for IFN-γ production. J Immunol. 1998; 161(7):3400-7.

Billiau A. Interferon-γ: Biology and role in pathogenesis. Adv Immunol. 1996; 62:61-130.

Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-γ. Annu Rev Immunol. 1997; 15:749-95.

Dinarello CA. Interleukin-18, a proinflammatory cytokine. Eur Cytokine Netw. 2000; 11(3):483-6.

Kojima S, Nagamine Y, Hayano M, Looareesuwan S, Nakanishi K. A potential role of interleukin 18 in severe falciparum malaria. Acta Trop. 2004; 89(3):279-84.

Singh RP, Kashiwamura S, Rao P, Okamura H, Mukherjee A, Chauhan VS. The role of IL-18 in blood-stage immunity against murine malaria Plasmodium yoelii 265 and Plasmodium berghei ANKA. J Immunol. 2002; 168(9):4674-81.

Helegbe GK, Yanagi T, Senba M, Huy NT, Shuaibu MN, Yamazaki A, Kikuchi M, Yasunami M, Hirayama K. Histopathological studies in two strains of semi-immune mice

infected with Plasmodium berghei ANKA after chronic exposure. Parasitol Res. 2011; 108(4):807-14.

Edington GM. Pathology of malaria in west africa. Br Med J. 1967; 1(5542):715-18.

Franke-Fayard B, Janse CJ, Cunha-Rodrigues M, Ramesar J, Büscher P, Que I, Löwik C, Voshol PJ, den Boer MAM, van Duinen SG. Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc Nat Acad of Sci U S A. 2005; 102(32):11468-73.

Smith L, Hunter K, Oldfield E, Strickland G. Murine malaria: Blood clearance and organ sequestration of Plasmodium yoelii-infected erythrocytes. Infect Immun. 1982; 38(1):162-7.

Meis JFGM, Verhave JP, Jap PHK, Sinden RE, Meuwissen JHET. Malaria parasites-discovery of the early liver form. Nature. 1983; 302:424-6.

Coquelin F, Boulard Y, Mora-Silvera E, Richard F, Chabaud AG, Landau I. Final stage of maturation of the erythrocytic schizonts of rodent Plasmodium in the lungs. C R Acad Sci III. 1999; 322(1):55-62.

Rajapurkar MM. Renal involvement in malaria. J Postgrad Med. 1994; 40(3):132-4.

Hearn J, Rayment N, Landon DN, Katz DR, De Souza JB. Immunopathology of cerebral malaria: Morphological evidence of parasite sequestration in murine brain microvasculature. Infect Immun. 2000; 68(9):5364-76.

Baptista FG, Pamplona A, Pena AC, Mota MM, Pied S, Vigário AM. Accumulation of Plasmodium berghei-infected red blood cells in the brain is crucial for the development of cerebral malaria in mice. Infect Immun. 2010; 78(9):4033-9.

Lacerda-Queiroz N, Rodrigues DH, Vilela MC, Miranda AS, Amaral DCG, Camargos ERS, Carvalho LJM, Howe CL, Teixeira MM, Teixeira AL. Inflammatory changes in the central nervous system are associated with behavioral impairment in Plasmodium berghei (strain ANKA)-infected mice. Exp Parasitol. 2010; 125(3):271-8.

Mackey L, Hochmann A, June C, Contreras C, Lambert P. Immunopathological aspects of Plasmodium berghei infection in five strains of mice. I. Immunopathology of cerebral and other tissue lesions during the infection. Clin Exp Immunol. 1980; 42(3):412-11.

Rudin W, Eugster HP, Bordmann G, Bonato J, Müller M, Yamage M, Ryffel B. Resistance to cerebral malaria in tumor necrosis factor-alpha/beta-deficient mice is associated with a reduction of intercellular adhesion molecule-1 up-regulation and T helper type 1 response. Am J Pathol. 1997; 150(1):257-66.

Curfs J, Vandermeide P, Billiau A, Thmeuwissen J, Eling W. Plasmodium berghei: Recombinant interferon-γ and the development of parasitemia and cerebral lesions in malaria-infected mice. Exp Parasitol. 1993; 77(2):212-23.

de Kossodo S, Grau G. Profiles of cytokine production in relation with susceptibility to cerebral malaria. J Immunol. 1993; 151(9):4811-20.

Clark I, Rockett K, Cowden W. Proposed link between cytokines, nitric oxide and human cerebral malaria. Parasitol Today. 1991; 7(8):205-7.

Grau GE, Frei K, Piguet PF, Fontana A, Heremans H, Billiau A, Vassalli P, Lambert PH. Interleukin 6 production in experimental cerebral malaria: Modulation by anticytokine antibodies and possible role in hypergammaglobulinemia. J Exp Med. 1990; 172(5):1505-8.

Carvalho LJM, Lenzi LH, Pelajo-Machado M, Oliveira DL, Daniel-Ribeiro CT, Ferreira-da-Cruz MF. Plasmodium berghei: Cerebral malaria in CBA mice is not clearly related to plasma TNF levels or intensity of histopathological changes. Exp Parasitol. 2000; 95:1-7.

Neill A, Hunt N. Pathology of fatal and resolving Plasmodium berghei cerebral malaria in mice. Parasitol. 1992; 105(Pt 2):165-75.

Weiss ML, Kubat K. Plasmodium berghei: A mouse model for the “Sudden death” and “Malaria lung” syndromes. Exp Parasitol. 1983; 56(1):143-51.

Corbett CE, Duarte MI, Lancellotti CL, Silva MA, Andrade JHF. Cytoadherence in human falciparum malaria as a cause of respiratory distress. J Trop Med Hyg. 1989; 92:112-20.

Duarte M, Corbett CE, Boulos M, Amato Neto V. Ultrastructure of the lung in falciparum malaria. Am J Trop Med Hyg. 1985; 34(1):31-5.

Senaldi G, Vesin C, Chang R, Grau GE, Piguet PF. Role of polymorphonuclear neutrophil leukocytes and their integrin CD11a (LFA-1) in

the pathogenesis of severe murine malaria. Infect Immun. 1994; 62(4):1144-49.

Charoenpan P, Indraprasit S, Kiatboonsri S, Suvachittanont O, Tanomsup S. Pulmonary edema in severe falciparum malaria. Hem-odynamic study and clinicophysiologic correlation. Chest. 1990; 97(5):1190-7.

Pongponratn E, Riganti M, Punpoowong B, Aikawa M. Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: A pathological study. Am J Trop Med Hyg. 1991; 44(2):168-75.

Maguire GP, Handojo T, Pain MCF, Kenangalem E, Price RN, Tjitra E, Anstey NM. Lung injury in uncomplicated and severe falciparum malaria: A longitudinal study in Papua, Indonesia. J Infect Dis. 2005; 192(11):1966-74.

Lovegrove FE, Gharib SA, Peña-Castillo L, Patel SN, Ruzinski JT, Hughes TR, Liles WC, Kain KC. Parasite burden and CD36-mediated sequestration are determinants of acute lung injury in an experimental malaria model. PLoS Pathog. 2008; 4(5):e1000068.

Baheti R, Laddha P, Gehlot RS. Liver involvement in falciparum malaria–A Histo-pathological analysis. Indian Acad Clin Med. 2003; 4(1):34-8.

Ramana CV, Gil MP, Schreiber RD, Stark GR. Stat1-dependent and-independent pathways in IFN-γ-dependent signaling. Trends Immunol. 2002; 23(2):96-101.

Haque A, Best SE, Amante FH, Ammerdorffer A, de Labastida F, Pereira T, Ramm GA, Engwerda CR. High parasite burdens cause liver damage in mice following Plasmodium berghei ANKA infection independently of CD8(+) T cell-mediated immune pathology. Infect Immun. 2011; 79(5):1882-8.

Prommano O, Chaisri U, Turner GD, Wilairatana P, Ferguson DJ, Viriyavejakul P, White NJ, Pongponratn E. A quantitative ultrastructural study of the liver and the spleen in fatal falciparum malaria. Southeast Asean J Trop Med Public Health. 2005; 36(6):1359-70.

Ebaid H, Dkhil MA, Danfour MA, Tohamy A, Gabry MS. Piroxicam-induced hepatic and renal histopathological changes in mice. Libyan J Med. 2007; 2(2):82-9.

Jaramillo M, Plante I, Ouellet N, Vandal K, Tessier PA, Olivier M. Hemozoin-inducible proinflammatory events In Vivo: Potential role in malaria infection. J Immunol. 2004; 172:3101-10.

Silva APC, Rodrigues SCO, Merlo FA, Paixão TA, Santos RL. Acute and chronic hist-opathologic changes in wild type or TLR-2-/-, TLR-4-/-, TLR-6-/-, TLR-9-/-, CD14, and MyD-88 mice experimentally infected with Plasmodium chabaudi. Braz J Vet Pathol. 2011; 4:5-12.

Kamal GI, Rodney SM. Liver. Anderson’s Pathology Vol. 2 10th Ed. Mosby Elsevier. 1996.p.1817-1818.

Lichtenberg F. Infectious disease. In Robbins Pathologic Basis of disease 3rd Ed, Cotren RS, Kumar V and Robbins SL. Philadelphia USA, WB Saunders. 1989. p.328.

Dondorp AM, Desakorn V, Pongtavornpinyo W, Sahassananda D, Silamut K, Chotivanich K, Newton PN, Pitisuttithum P, Smithyman A, White NJ. Estimation of the total parasite biomass in acute falciparum malaria from plasma pfHRP2. PLoS Med. 2005; 2(10):e390.

Martins YC, Smith MJ, Pelajo Machado M, Werneck GL, Lenzi HL, Daniel‐Ribeiro CT, Carvalho LJ. Characterization of cerebral malaria in the outbred swiss webster mouse infected by Plasmodium berghei ANKA. Int J Exp Pathol. 2009; 90(2):119-30.

Pamplona A, Clark IA, Mota MM. Severe malaria increases the list of heme oxygenase-1-

protected diseases. Future Microbiol. 2007; 2:361-3.

Penet MF, Laigle C, Fur YL, Confort-Gouny S, Heurteaux C, Cozzone PJ, Viola A. In vivo characterization of brain morphometric and metabolic endophenotypes in three inbred strains of mice using magnetic resonance techniques. Behav Genet. 2006; 36(5):732-44.

Helegbe GK, Yanagi T, Senba M, Huy NT, Shuaibu MN, Yamazaki A, Kikuchi M, Yasunami M, Hirayama K. Histopathological studies in two strains of semi-immune mice infected with Plasmodium berghei ANKA after chronic exposure. Parasitol Res. 2011; 108:807-14.

Turrini F, Schwarzer E, Arese P. The involvement of hemozoin toxicity in depression of cellular immunity. Parasitol Today. 1993; 9(8):297-300.

Canfield CJ, Miller LH, Bartelloni PJ, Eichler P, Barry KG. Acute renal failure in Plasmodium falciparum malaria: Treatment by peritoneal dialysis. Arch Intern Med. 1968; 122(3):199-203.

World Health Organisation. Severe falciparium malaria. Transac Royal Soc Trop Med Hyg. 2000; 94, (Suppl 1):S1-90.

White NJ, Ho M. The pathophysiology of malaria. Adv Parasitol. 1992; 31:83-173.

Rui-Mei L, Kara A, Sinniah R. Dysregulation of cytokine expression in tubulointerstitial nephritis associated with murine malaria. Kidney Int. 1998; 53(4):845-52

Published
2015-10-17
How to Cite
1.
JABBARZARE M, CHIN VK, TALIB H, YAM MF, ADAM SK, HASSAN H, ABDUL MAJID R, MAT TAIB CN, MOHD MOKLAS MA, TAUFIK HIDAYAT M, MOHD SIDEK H, BASIR R. Interleukin-18 Antagonism Improved Histopathological Condi¬tions of Malaria Infection in Mice. IJPA. 10(3):389-01.
Section
Original Article(s)