Trypanocidal Effect of Nano MOFs-EP on Circulating Forms of Trypanosoma cruzi

  • Marisol MORALES-BAEZ Biomedical Sciences, Veracruzana University, Xalapa, Veracruz, México
  • José María RIVERA-VILLANUEVA LADISER Organic Chemistry, Faculty of Chemical Sciences, Veracruzana University, Orizaba, Veracruz, México
  • Aracely LÓPEZ-MONTEON LADISER Immunology and Molecular Biology, Faculty of Chemical Sciences, Veracruzana University, Orizaba, Veracruz, México
  • Rodolfo PEÑA-RODRÍGUEZ LADISER Organic Chemistry, Faculty of Chemical Sciences, Veracruzana University, Orizaba, Veracruz, México
  • Ángel TRIGOS LADISER Immunology and Molecular Biology, Faculty of Chemical Sciences, Veracruzana University, Orizaba, Veracruz, México
  • Angel RAMOS-LIGONIO Biomedical Research Center, Veracruzana University, Xalapa, Veracruz, México
Keywords: Metal-organic frame-works (MOFs), Ergosterol peroxide, Chagas disease, Trypanosoma cruzi, Trypanocidal activity

Abstract

Background: Chagas disease caused by the parasite Trypanosoma cruzi is considered a neglected disease in several countries. One of the main problems about this disease is the lack of an effective treatment and the absence of adverse effects. T. cruzi, like most pathogenic fungi and yeasts, require specific sterols to maintain viability and proliferative capacity during their life cycle. However, the oxidation of this molecule to ergosterol peroxide has shown several biological effects, including its trypanocidal activity. Methods: We have synthesized MOFs nanoparticles as carrier system coupled to ergosterol peroxide (MOFs-EP) and we have studied its effect on the circulating forms of the T. cruzi parasite. Results: MOFs-EP possess an efficient trypanocidal activity at much lower inhibitory concentrations (ng/mL) that the concentrations shown by ergosterol peroxide (mg/mL) when administered unconjugated form. Conclusion: Our results open a new possibility in the biomedical application of MOFs and ergosterol peroxide in the search for new options for the treatment of Chagas disease.

References

1. WHO, Chagas disease (American trypanosomiasis). https://www.who.int/chagas/en/
2. Oh S, Kim S, Kong S et al. Synthesis and biological evaluation of 2,3-dihydroimidazo[1,2-a]benzimidazole derivatives against Leishmania do-novani and Trypanosoma cruzi. Eur J Med Chem. 2014;84:395–403.
3. Apt W. Current and developing therapeutic agents in the treatment of Chagas disease. Drug Des Devel Ther. 2010; 24;4:243-53.
4. Wu C, Hu A, Zhang L, Lin W. A homochiral po-rous metal-organic framework for highly enantiose-lective heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 2005; 127, 8940.
5. Evans OR, Lin W. Crystal engineering of NLO materials based on metal--organic coordination networks. Acc Chem Res. 2002; 35(7):511-22.
6. Matsuda R, Kitaura R, Kitagawa, S et al. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 2005; 436, 238.
7. Wilasinee Hatakeyama, Talia J. Sanchez, Misty D. Rowe et al. Synthesis of gadolinium nanoscale met-al-organic framework with hydrotropes: manipula-tion of particle size and magnetic resonance imag-ing capability. Appl. Mater. Interfac-es. 2011; 3(5):1502–1510
8. Peng Li, Su-Young Moon, Mark A. Guelta et al. Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano. 2016; 10(10):9174–9182.
9. Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew Chem Int Ed Engl. 2004; 43(18):2334-75.
10. Alvaro M, Carbonell E, Ferrer B, Llabrés i Xamena FX, Garcia H. Semiconductor behavior of a metal-organic framework (MOF). Chemistry. 2007; 13(18):5106-12.
11. Huang L, Wang H, Chen J et al. Synthesis, mor-phology control, and properties of porous metal-organic coordination polymers. Microporous Mes-oporous Mater. 2003; 58:105–114.
12. Cohen, SM. Postsynthetic Methods for the Func-tionalization of Metal−Organic Frameworks. Chem. Rev. 2012; 112:970−1000.
13. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The Chemistry and Applications of Metal-Organic frameworks. Science. 2013; 341:974−986.
14. Furukawa H, Müller U. Yaghi OM. Heterogeneity within Order” in Metal−Organic Frameworks. An-gew Chem Int. 2015; 54:3417−3430.
15. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol. Pharmaceutics. 2008; 5:505−515.
16. Arenzano JA, Martin del Campo J, Virues JO et al. Theoretical study of the hydrogen bonding interac-tion between Levodopa and a new functionalized pillared coordination polymer designed as a carrier system. J Mol Struct. 2015; 1083:106-110.
17. Ramos-Ligonio A, López-Monteon A, Trigos A. Trypanocidal Activity of Ergosterol Peroxide from Pleurotus ostreatus. Phytother Res. 2012; 6:938-43.
18. Ahlborn J, Calzolari N, Spielmeyer A, Avci SS, Zimmer M, Rühl M. Enrichment of vitamin D2 in mycelium from submerged cultures of the agaric mushroom Pleurotus sapidus. J Food Sci Technol. 2018; 55(9):3833-3839.
19. Wang JF, Huang MJ, Fang WL et al. 5ª, 8ª-Epidioxyergosta-6, 22-dien-3b-ol (Ergosterol Per-oxide) Methanol solvate. Acta Cryst. 2004; 5:764-765.
20. Meza-Menchaca T, Suárez-Medellín J, Del Ángel-Piña C, Trigos Á. The Amoebicidal Effect of Er-gosterol Peroxide Isolated from Pleurotus ostreatus. Phytother Res. 2015; 12:1982-6.
21. Benjamin RJ, Stramer SL, Leiby DA et al. Trypano-soma cruzi infection in North America and Spain: evidence in support of transfusion transmission. Transfusion 2012; 52(9):1913–1921.
22. Conerney B, Jensen P, Kruger PE, Moubaraki B, Murray KS. Synthesis and structural characterisa-tion of two coordination polymers (molecular lad-ders) incorporating [M(OAc)(2)](2) secondary build-ing units and 4,4 '-bipyridine [M = Cu(II), Zn(II)]. Cryst Eng Comm. 2003; 5(80):454-458.
23. Louis J. Farrugia, WinGX and ORTEP for Win-dows: an update. J. Appl. Cryst. 2012; 45:849–854
24. Allahverdiyev AM, Abamor ES, Bagirova M et al. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomedicine. 2011; 6:2705–14.
25. Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol. 2003; 19(11):495-501.
26. Abazari R, Mahjoub AR, Molaie S, Ghaffarifar F, Ghasemi E, Slawin AMZ, Carpenter-Warren CL. The effect of different parameters under ultra-sound irradiation for synthesis of new nanostruc-tured Fe3O4@bio-MOF as an efficient anti-leishmanial in vitro and in vivo conditions. Ultrason Sonochem. 2018; 43:248-261.
27. Rong L, Tian Y Zheng S, Zhiyong W. The prepa-ration of metal–organic frameworks and their bio-medical application. Int J Nanomedicine. 2016; 11:1187–1200.
28. Rodrigues Coura J, de Castro SL. A critical review on Chagas disease chemotherapy. Mem Inst Os-waldo Cruz. 2002; 97:3-24.
Published
2020-03-10
How to Cite
1.
MORALES-BAEZ M, RIVERA-VILLANUEVA JM, LÓPEZ-MONTEON A, PEÑA-RODRÍGUEZ R, TRIGOS Ángel, RAMOS-LIGONIO A. Trypanocidal Effect of Nano MOFs-EP on Circulating Forms of Trypanosoma cruzi. Iran J Parasitol. 15(1):115-123.
Section
Original Article(s)