Molecular Characterization of Echinococcus granulosus Sensu Lato from Livestock in North Khorasan Province, Iran

  • Mitra SALEHI Dept. of Parasitology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran and Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran andVector-Borne Diseases Research Center, North Khorasan University of Medical & Laboratory of North Khorasan Veterinary Head office, Bojnurd, Iran
  • Saeed YAGHFOORI Dept. of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
  • Pejman BAHARI Vector-Borne Diseases Research Center, North Khorasan University of Medical & Laboratory of North Khorasan Veterinary Head office, Bojnurd, Iran
  • Mohsen SEYEDABADI Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran and Vector-Borne Diseases Research Center, North Khorasan University of Medical & Laboratory of North Khorasan Veterinary Head office, Bojnurd, Iran
  • Sima PARANDE SHIRVAN Vector-Borne Diseases Research Center, North Khorasan University of Medical & Laboratory of North Khorasan Veterinary Head office, Bojnurd, Iran
Keywords: Cox1 gene, Genotypes, Hydatid cyst, Molecular epidemiology, Iran

Abstract

Background: Echinococcus granulosus is one the most important zoonotic disease which is endemic in worldwide. Molecular method has allowed discrimination of different genotypes (G1-G10), providing new approach in development of prevention and control program of hydatid cyst. This study was conducted to identify the genotypes of E. granulosus from domestic animals in nine districts of North Khorasan Province using the mitochondrial cox1 gene sequence. Methods: Overall, 122 hydatid cyst were collected during 2016-2017 from sheep (n=43) and cattle (n=79). DNA was extracted from protoscoleces and germinal layers and amplified by PCR. Phylogenetic analysis was also performed by analyzing the complete nucleotide sequences of mitochondrial cytochrome C oxidase subunit 1 (cox1) of E. granulosus genotypes from various locations. Results: Sequencing of the amplified products revealed the presence of G1 as dominant genotype, G3 and Echinococcus canadenesis in one isolate each. Altogether, 9 haplotypes were detected based on cox1 gene. Haplotype 3 was the common variant that found in 58 including 42 cattle and 16 sheep. Conclusion: This study provided knowledge on the identity of E. granulosus cysts collected from sheep and cattle in North Khorasan Province. Furthermore, these results showed the potentials of sheep as a main source of infection to humans, contributing the transmission and maintain of hydatid cyst in this region.

References

1. Eckert J. WHO-OIE Manual on Echinococcosis in Humans and Animals: A Public Health Problem of Global Concern. 2001.
2. Torgerson P, Budke C. Echinococcosis–an international public health challenge. Res Vet Sci. 2003;74(3):191-202.
3. Budke CM, Deplazes P, Torgerson PR. Global socioeconomic impact of cystic echinococcosis. Emerg Infect Dis. 2006;12(2):296-303.
4. Sadjjadi SM. Present situation of echinococcosis in the Middle East and Arabic North Africa. Parasitol Int. 2006;55:S197-S202.
5. Wang Z, Wang X, Liu X. Echinococcosis in China, a review of the epidemiology of Echinococcus spp. Ecohealth. 2008;5(2):115-26.
6. Torgerson PR, Oguljahan B, Muminov AE et al. Present situation of cystic echinococcosis in Central Asia. Parasitol Int. 2006;55:S207-S12.
7. Rokni M. Echinococcosis/hydatidosis in Iran. Iran J Parasitol. 2009;4(2):1-16.
8. Parsa F, Harandi MF, Rostami S, Sharbatkhori M. Genotyping Echinococcus granulosus from dogs from Western Iran. Exp Parasitol. 2012;132(2):308-12.
9. Razmi GR, Sardari K, Kamrani A. Prevalence of Echinococcus granulosus and other intestinal helminths of stray dogs in Mashhad area, Iran. Archives of Razi. 2006;61(3):143-8.
10. Dalimi A, Motamedi G, Hosseini M et al. Echinococcosis/hydatidosis in western Iran. Vet Parasitol. 2002;105(2):161-71.
11. Sarkari B, Sadjjadi S, Beheshtian M, Aghaee M, Sedaghat F. Human cystic Echinococcosis in Yasuj district in Southwest of Iran: an epidemiological study of seroprevalence and surgical cases over a ten‐year period. Zoonoses Public Health. 2010;57(2):146-50.
12. Ahmadi N, Hamidi M. A retrospective analysis of human cystic echinococcosis in Hamedan province, an endemic region of Iran. Ann Trop Med Parasitol. 2008;102(7):603-9.
13. Hosseini SH, Eslami A. Morphological and developmental characteristics of Echinococcus granulosus derived from sheep, cattle and camels in Iran. J Helminthol. 1998;72(04):337-41.
14. Thompson R. The taxonomy, phylogeny and transmission of Echinococcus. Exp Parasitol. 2008;119(4):439-46.
15. Carmena D, Cardona GA. Echinococcosis in wild carnivorous species: epidemiology, genotypic diversity, and implications for veterinary public health. Vet Parasitol. 2014;202(3):69-94.
16. Sharbatkhori M, Mirhendi H, Harandi MF et al. Echinococcus granulosus genotypes in livestock of Iran indicating high frequency of G1 genotype in camels. Exp Parasitol. 2010;124(4):373-9.
17. Thompson RA, McManus DP. Towards a taxonomic revision of the genus Echinococcus. Trends Parasitol. 2002;18(10):452-7.
18. Sharafi SM, Rostami-Nejad M, Moazeni M et al. Echinococcus granulosus genotypes in Iran. Gastroenterol Hepatol Bed Bench. 2014;7(2): 82–88.
19. Borji H, Parandeh S. The abattoir condemnation of meat because of parasitic infection, and its economic importance: results of a retrospective study in north–eastern Iran. Ann Trop Med Parasitol. 2010; 104(8):641-7.
20. Salehi M, Adinezade A, Khodajo R, Saberi Z, Yousefi A. The epidemiologic survey of operated patients with hydatid cyst in hospitals of North Khorasan province during 2010–2011. J North Khorasan Univ Med Sci. 2013;4(4):623-9.
21. Bowles J, Blair D, McManus DP. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol. 1992;54(2):165-73.
22. Hall TA, editor BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series; 1999: [London]: Information Retrieval Ltd., c1979-c2000.
23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876-82.
24. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25(7):1253-6.
25. Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. 2003. Publisher: Sinauer Associates.
26. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451-2.
27. Hajialilo E, Harandi MF, Sharbatkhori M, Mirhendi H, Rostami S. Genetic characterization of Echinococcus granulosus in camels, cattle and sheep from the south-east of Iran indicates the presence of the G3 genotype. J Helminthol. 2012;86(03):263-70.
28. Fadakar B, Tabatabaei N, Borji H, Naghibi A. Genotyping of Echinococcus granulosus from goats and sheep indicating G7 genotype in goats in the Northeast of Iran. Vet Parasitol. 2015;214(1):204-7.
29. Rostami S, Talebi S, Babaei Z et al. High resolution melting technique for molecular epidemiological studies of cystic echinococcosis: differentiating G1, G3, and G6 genotypes of Echinococcus granulosus sensu lato. Parasitol Res. 2013;112(10):3441-7.
30. Pour AA, Hosseini SH, Shayan P. Comparative genotyping of Echinococcus granulosus infecting buffalo in Iran using cox1 gene. Parasitol Res. 2011;108(5):1229-34.
31. Sharbatkhori M, Harandi MF, Mirhendi H, Hajialilo E, Kia EB. Sequence analysis of cox1 and nad1 genes in Echinococcus granulosus G3 genotype in camels (Camelus dromedarius) from central Iran. Parasitol Res. 2011;108(3):521-7.
32. Bart J, Abdukader M, Zhang Y et al. Genotyping of human cystic echinococcosis in Xinjiang, PR China. Parasitology. 2006;133(05):571-9.
33. Beyhan YE, Umur Ş. Molecular characterization and prevalence of cystic echinococcosis in slaughtered water buffaloes in Turkey. Vet Parasitol. 2011;181(2):174-9.
34. Mario L, Takano K, Brochado JF et al. Infection of humans and animals with Echinococcus granulosus (G1 and G3 strains) and E. ortleppi in Southern Brazil. Vet Parasitol. 2011;177(1):97-103.
35. Farhadi M, Fazaeli A, Haniloo A. Genetic characterization of livestock and human hydatid cyst isolates from northwest Iran, using the mitochondrial cox1 gene sequence. Parasitol Res. 2015;114(12):4363-70.
36. Nikmanesh B, Mirhendi H, Ghalavand Z et al. Genotyping of Echinococcus granulosus isolates from human clinical samples based on sequencing of mitochondrial genes in Iran, Tehran. Iran J Parasitol. 2014;9(1):20-27.
37. Busi M, Šnábel V, Varcasia A et al. Genetic variation within and between G1 and G3 genotypes of Echinococcus granulosus in Italy revealed by multilocus DNA sequencing. Vet Parasitol. 2007;150(1):75-83.
38. Vural G, Baca AU, Gauci CG, Bagci O, Gicik Y, Lightowlers MW. Variability in the Echinococcus granulosus cytochrome C oxidase 1 mitochondrial gene sequence from livestock in Turkey and a re-appraisal of the G1–3 genotype cluster. Vet Parasitol. 2008;154(3):347-50.
39. Casulli A, Manfredi MT, La Rosa G, Di Cerbo AR, Genchi C, Pozio E. Echinococcus ortleppi and E. granulosus G1, G2 and G3 genotypes in Italian bovines. Vet Parasitol. 2008;155(1):168-72.
40. Sharma M, Fomda BA, Mazta S, Sehgal R, Singh BB, Malla N. Genetic diversity and population genetic structure analysis of Echinococcus granulosus sensu stricto complex based on mitochondrial DNA signature. PloS One. 2013;8(12):e82904.
41. Sharma M, Sehgal R, Fomda BA, Malhotra A, Malla N. Molecular characterization of Echinococcus granulosus cysts in north Indian patients: identification of G1, G3, G5 and G6 genotypes. PLoS Negl Trop Dis. 2013;7(6):e2262.
42. Aaty HA, Abdel-Hameed D, Alam-Eldin Y et al. Molecular genotyping of Echinococcus granulosus in animal and human isolates from Egypt. Acta Tropica. 2012;121(2):125-8.
43. Amer S, Helal IB, Kamau E, Feng Y, Xiao L. Molecular Characterization of Echinococcus granulosus Sensu Lato from Farm Animals in Egypt. PloS One. 2015;10(3):e0118509.
44. Pezeshki A, Akhlaghi L, Sharbatkhori M et al. Genotyping of Echinococcus granulosus from domestic animals and humans from Ardabil Province, northwest Iran. J Helminthol. 2013;87(04):387-91.
45. Alvarez Rojas CA, Ebi D, Paredes R et al. High intraspecific variability of Echinococcus granulosus sensu stricto in Chile. Parasitol Int. 2017;66(2):112-115.
46. Lavikainen A, Haukisalmi V, Lehtinen M, Henttonen H, Oksanen A, Meri S. A phylogeny of members of the family Taeniidae based on the mitochondrial cox1 and nad1 gene data. Parasitology. 2008;135(12):1457-67.
47. Nakao M, Lavikainen A, Yanagida T, Ito A. Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae).Int J Parasitol. 2013;43(12):1017-29.
48. Nakao M, McManus D, Schantz P, Craig P, Ito A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology. 2007;134(05):713-22.
Published
2018-12-19
How to Cite
1.
SALEHI M, YAGHFOORI S, BAHARI P, SEYEDABADI M, PARANDE SHIRVAN S. Molecular Characterization of Echinococcus granulosus Sensu Lato from Livestock in North Khorasan Province, Iran. Iran J Parasitol. 13(4):577-586.
Section
Original Article(s)