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Abstract 
Background: The interplay of OGG1, 8-Oxoguanine, and oxidative stress triggers the exagger-
ated release of cytokines during malaria, which worsens the outcome of the disease. We aimed to 
investigate the involvement of OGG1 in malaria and assess the effect of modulating its activity 
on the cytokine environment and anemia during P. berghei malaria in mice.  
Methods: Plasmodium berghei ANKA infection in ICR mice was used as a malaria model. OGG1 
concentration and oxidative stress levels in P. berghei-infected mice and their control counterparts 
were assessed during malaria using enzyme-linked immunosorbent assay. OGG1 activity in ma-
laria mice was modulated using treatment with TH5487 and O8-OGG1 inhibitors. The effects 
of modulating OGG1 activity using OGG1 inhibitors on cytokine release and anemia during P. 
berghei malaria infection were assessed by cytometric bead array and measurement of total normal 
red blood cell count respectively.  
Results: The plasma OGG1 level was significantly upregulated and positively correlated with 
parasitemia during P. berghei malaria in mice. Modulation of OGG1 ameliorated malaria severity 
by improving the total normal RBC count in TH5487 and O8-treated mice. Modulation of 
OGG1 with TH5487 caused significant reductions in serum levels of TNF-α, IFN-γ, IL-6, and 
IL-10. Similarly, OGG1 modulation activity using an O8-OGG1 inhibitor caused a significant 
reduction in serum levels of TNF-α, IL-2, IL-6, and IL-10.  
Conclusion: The findings indicate the involvement of OGG1 in the P. berghei malaria infection. 
OGG1 inhibition by TH5487 and O8-OGG1 inhibitors suppressed excessive cytokine release, 
and this may represent a novel therapeutic strategy for ameliorating the severity of malaria infec-
tion. 
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Introduction  
 

alaria is an important parasitic dis-
ease with a significant impact on 
global health due to its high mor-

bidity and mortality (1). The host’s immune 
system interacts with Plasmodium species dur-
ing malaria to influence several responses (2). 
Severe malaria infection has a poor prognosis 
due to prolonged immune system hyperactiva-
tion caused by parasite invasion and multipli-
cation (3). Malaria is associated with dysregu-
lated cytokine production (4).The equilibrium 
between the pro-inflammatory and anti-
inflammatory responses is maintained by cy-
tokines such as transforming growth factor-β 
(TGF-β) and IL-10. The interruption of this 
equilibrium can lead to increased malaria se-
verity and mortality (5). Elevated free radical 
levels caused by the destruction of hemoglo-
bin in Plasmodium-infected RBC damage not only 
the membrane of the infected RBC but also 
the membrane of the uninfected RBC, which 
can lead to malaria anemia  (6,7). Severe ane-
mia in young children and pregnant women is 
associated with high mortality (6,8). 

Oxidative stress is an important part of ma-
laria pathophysiology (9). Oxidative stress can 
lead to oxidative DNA damage during malaria. 
Guanine is the most vulnerable nucleobase of 
nucleic acid DNA to oxidation, giving rise to 
the production of 8-oxo-7,8- dihydroxygua-
nine (8-OxoG), the most common DNA ad-
duct caused by oxidative stress (10). The 
OGG1 is a base excision repair enzyme re-
sponsible for removing the oxidized base 
through base excision repair (BER) pathway 
(11). Previous studies suggested that OGG1-
initiated DNA BER resulted in the formation 
of OGG1/8-OxoG complex which activated 
small GTPases. These small GTPases in turn 
generate cell activation signals leading to the 
increased expression of pro-inflammatory cy-
tokines causing severe inflammatory response 
(12,13). Downregulation of inflammatory re-
sponse was observed in the absence of func-

tional OGG1 in several previous studies, 
which suggests that OGG1/8-OxoG activities 
can affect disease pathology and modulation 
of their activity could be a novel therapeutic 
strategy in certain diseases particularly those 
associated with inflammation (14-16).  

However, the role and involvement of 
OGG1 in malaria infection is yet to be studied. 
Hence, we aimed to determine the effect of 
modulating OGG1 activity on anemia and cy-
tokine environment during P. berghei malaria in 
mice. 
 
Materials and Methods 
 
Research experimental animals and ethical 
note 

Juvenile male ICR mice, aged 4-5 weeks and 
weighing between 17 and 20 g were purchased 
from a local supplier and housed at the animal 
house of the Faculty of Medicine and Health 
Sciences, University Putra Malaysia. The mice 
were allowed to acclimatise for 2 weeks prior 
to experiment. The mice were divided into 
four groups (n=8) as follows: Group I (Con-
trol mice), Group II (Malaria mice day 1), 
Group III (Malaria mice day 3) and Group IV 
(Malaria mice day 5).  

The Institutional Animal Care and Use 
Committee at University Putra Malaysia re-
vised and approved the protocols for this 
study with an ethical approval number 
(UPM/IACUC/AUP-R001/2022).  
 
Animal infection and sample collection 

P. berghei ANKA strain was obtained from 
the Anatomy laboratory of University Putra 
Malaysia. Mice were designated as P. berghei-
infected groups and control group, based on 
previously reported methods (17). The mice in 
the P. berghei-infected groups received 200 µL 
of the diluted blood containing 1x107 parasi-
tized RBC via intraperitoneal injection, while 
the mice in the control group received 0.2 ml 
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of similarly diluted uninfected blood from a 
healthy donor mouse. Whole blood was col-
lected from the mice through cardiac puncture 
on days 1, 3, and 5 after inoculation, under 
general anesthesia of ketamine (100 mg/kg) 
and xylazine (10 mg/kg) by intraperitoneal 
injections. Plasma separation was carried out 
at 1000 x g for 15 minutes for the determina-
tion of plasma OGG1 levels on day1, day 3 
and day 5 respectively. 
 
Measurement of parasitemia  

Thin blood films from tail venesection were 
prepared daily for each mouse to monitor par-
asitemia. The thin blood smears were exam-
ined using an Olympus CX31 light micro-
scope with oil immersion at a total magnifica-
tion of 1000x after being stained with Leish-
man stain. Specifically, the crenelation method 
was used to count five different microscopic 
fields on each slide, each field containing 
about 200 cells (18). Parasitemia was deter-
mined by counting the number of parasitized 
red blood cells, which have been infected by 
the parasites. Five fields, each containing ap-
proximately 200 cells, were counted. The par-
asitemia was then calculated as the percentage 
of parasitized red blood cells [i.e. Parasitemia 
(%) = (Parasitized red blood cells / Total red 
blood cells count) × 100] (17).  

Determination of OGG1 level during malaria 
infection 

The concentration of OGG1 was quantified 
using ELISA. The plasma samples were ana-
lyzed in duplicate using quantikine Mouse 
ogg1 ELISA kit (ABclonal® Technology, 
USA) according to the manufacturer’s instruc-
tions. Plates were read using a micro plate 
reader (VersaMax Molecular Devices®, Chi-
na) at a wavelength of 450 nm. 
 
Drugs preparation 

The TH5487 (catalogue no. 6749) and O8-
OGG1 (catalogue no. 6236) OGG1 inhibitors 
were purchased from Tocris Bioscience, USA. 
They were reconstituted according to the 
manufacturer’s instructions. The drugs were 
diluted with a vehicle prepared by mixing 
90ml of sterile phosphate buffer solution 
(PBS), 5ml of 5% glycerol, and 5ml of 5% T-
ween 80 (19). The dose used for each of the  
TH5487 and O8-OGG1 inhibitor was 30 
mg/kg by intraperitoneal injection (19). The 
prepared drug solutions were stored at -80℃ 
in freezer before use.  
 

 
Modulation of OGG1 activity 

OGG1 modulation was carried out from the 
1st to the 4th day following P. berghei inocula-
tion as shown in Table 1. 

 
Table 1: Modulation of OGG1 activity during malaria infection 

 
Group  Description 
Group I (control) Uninfected mice that received sterile vehicle (0.2 ml) daily by 

intraperitoneal injection 
Group II (vehicle-
treated) 

Malaria-infected mice that received sterile vehicle (0.2 ml) daily by 
intraperitoneal injection 

Group III (TH5487-
treated) 

malaria-infected mice that received TH5487 (30 mg/kg) daily by 
intraperitoneal injection 

Group IV (O8-treated) Malaria-infected mice that received an O8-OGG1 inhibitor (30 
mg/kg) daily by intraperitoneal injection 

 
Measurement of parasitemia and total red blood 

cell count were carried out daily until the fifth day. 
Cardiac puncture was performed for every mouse 

to withdraw about 400–500 µl of blood on day 5 
from which serum sample was obtainable. A cy-
tometric bead array procedure for the simultane-
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ous detection of IL-2, IL-4, IL-6, IL-10, IL-17A, 
IFN-γ and TNF-α was carried out on serum sam-
ples collected from P. berghei infected and control 
mice on the 5th day after infection and OGG1 
modulation. A commercially available mouse 
Th1/Th2/Th17 cytometric bead array kit (BD 
Biosciences, San Jose, CA, USA) was used for the 
experiment. The staining procedure was carried 
out in accordance with the instruction manual (BD 
CBA Mouse Th1/Th2/Th17 cytokine kit, cata-
logue no. 560485). Sample acquisition was 
achieved using BD FAC Suite software application 
embedded in the machine (BD FACS Lyric TM 
Flow Cytometer, San Jose). The final cytokines 
concentrations were determined using FlowJoTM 
software version 10, USA. 
 
Statistical analysis 

GraphPad Prism software (Prism 9, GraphPad 
Software, Inc., USA) was used for data analysis.   
Differences in the mean parasitemia and OGG1 
between the malaria and control groups were com-
pared using unpaired student's t-test. Similarly, the 
association between OGG1 and parasitemia was 
determined by Pearson correlation coefficient. 
Moreover, the differences in the mean total number 
of normal RBC and cytokine concentrations be-
tween the various treatment groups compared to 
malaria-untreated groups were determined using the 
one-way analysis of variance with a post hoc test us-
ing Tukey's honestly significant difference (HSD) test. 
A probability value of P<0.05 was considered statis-
tically significant. Results were presented as mean ± 
SEM. 
 
Results  
 
Effect of P. berghei malaria infection on 
plasma OGG1 levels  

The OGG1 levels in control and malaria mice 
following P. berghei inoculation during the early (day 
1), mid (day 3), and late (day 5) phases of malaria 
infection were assessed. No significant difference 

in the mean OGG1 concentration between malar-
ial (105.8 ± 30.49 pg/mL) and control mice (50.35 
± 12.26 pg/mL) on day 1. However, the means 
OGG1 concentration were observed to be signifi-
cantly different between malarial (236.4 ± 40.1 
pg/mL) and control mice (50.35 ± 12.26 pg/mL) 
on day 3 (P<0.01), as well as day 5 between the 
malarial (149.7 ± 34.59 pg/mL) and control (50.35 
± 12.26 pg/mL) mice (P<0.05) (Fig.1). 
 
OGG1 was positively correlated with parasi-
taemia during P. berghei malaria in mice 

A significant positive correlation between 
levels of parasitemia and OGG1 concentra-
tion was observed (r = 0.7048; P<0.001). 
Therefore, the increased in percentage para-
sitemia is associated with increasing levels of 
OGG1 during P. berghei malaria infection in 
mice (Fig. 2). 
 
Effect of modulating OGG1 activity on Total 
normal RBC count  

The mean percentage total normal RBC 
count differed significantly between the un-
treated P. berghei-infected mice receiving vehi-
cle (39.7 ± 1.18%) and their counterpart re-
ceiving TH5487 treatment [57.2 ± 3.81%), 
P<0.001] as well as O8-treatment [(70.30 ± 
3.62%), P<0.001]) (Fig. 3). 

Total number of normal RBC was used as 
an index of anemia during P. berghei malaria in 
mice. The total percentage of normal red 
blood cell (RBC) count in control mice ranged 
from 97.4-98.6% and remained stable. How-
ever, a profound reduction in total RBC count 
was observed in malaria-untreated mice during 
the late phase of the infection, with about a 
60% decrease in total RBC count.  However, 
in TH5487-treated mice, about 43% reduction 
in total RBC count was recorded, while about 
30% reduction in the total number of RBC 
was recorded in O8-treated mice (Fig. 3). 
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Fig. 1: OGG1 concentrations of P. berghei infected and control mice on day 1, day 3 and day 5 following P. 
berghei inoculation. Data were analyzed using Unpaired t-test (two-sided) at P<0.05. The results were presented 

as mean ± SEM with n= 8, *P<0.05, **P<0.01 
 
 

 
 

Fig. 2: Pearson correlation between the percentage parasitemia and OGG1 concentration. An increase in per-
centage parasitemia is associated with a significant increase in levels of OGG1 during P. berghei infection (r = 

0.7048; ***P<0.001), n=8. The data represent pooled results from the experiments 
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Fig. 3: Comparative mean percentage total RBC count curves for the control mice and P. berghei- infected 
mice that received vehicle (VEH), TH5487 and O8 treatments. Data were analyzed using Unpaired Student’s 
t-test at P<0.05 between malaria untreated mice and each of the treatment groups. Results were presented as 
Mean ± SEM (n= 8). The (*) denotes a comparison between the vehicle (VEH) and O8-treated mice and (¥) 
denotes a comparison between the vehicle (VEH) and TH5487-treated mice. C + VEH= Control + Vehicle; 

M + VEH= Malaria + Vehicle; M +TH5487= Malaria + TH5487; M + O8= Malaria + O8 
 
Effect of modulating OGG1 activity on cyto-
kine release during P. berghei malaria in 
mice 

There was a significant difference in the 
mean serum TNF- α concentrations between 
the untreated P. berghei-infected mice receiving 
vehicle (3235 ± 444 pg/ml) and their coun-
terpart receiving TH5487 treatment [(1903 ± 
424 pg/ml), P< 0.05] as well as O8-treatment 
[(1950 ± 171 pg/ml), P< 0.05] (Fig. 4). Simi-
larly, the difference in the mean serum IFN-γ 
concentrations differed significantly between 
the untreated P. berghei-infected mice receiving 
vehicle (2508 ± 438 pg/ml) and their coun-
terpart receiving TH5487 treatment [(1155 ± 
182 pg/ml), P< 0.05]. However, no significant 
difference in serum IFN-γ concentration ob-
served in O8-treated mice [(1876 ± 471 
pg/ml), P> 0.05] (Fig. 5). Moreover, the mean 
serum IL-2 concentrations differed signifi-
cantly between the P. berghei malaria-infected 
mice [(137 ± 10.8 pg/ml)] and O8-treated 
mice [(94.2 ± 5.18 pg/ml), P< 0.05].  Whereas, 
no significant difference in serum IL-2 con-

centrations between the P. berghei malaria-
infected mice [(137 ± 10.8 pg/ml)] and 
TH5487-treated mice [(141 ± 8.67pg/ml), P> 
0.05] (Fig. 6). 

The mean serum IL-10 concentrations dif-
fered significantly between the untreated P. 
berghei-infected mice receiving vehicle (2293 ± 
242 pg/ml) and their counterpart receiving 
TH5487 treatment [(1464 ± 160 pg/ml), P< 
0.01] as well as O8-treatment [(1334 ± 103 
pg/ml), P< 0.01] (Fig. 7). There were signifi-
cant differences in the mean serum IL-6 con-
centrations between the untreated P. berghei-
infected mice receiving vehicle (593 ± 122 
pg/ml) and the mice receiving TH5487 treat-
ment [(301 ± 23.3 pg/ml), P< 0.05] as well as 
O8-treatment [(224 ± 30.9 pg/ml), P<0.01] 
(Fig. 8). Even though there were some differ-
ences in the mean serum IL-4 concentrations 
(Fig. 9) and IL-17A concentrations (Fig.10) 
between all the untreated and treated P. berghei 
malaria-infected mice groups following 
OGG1modulation activity, these differences 
could not achieve significant levels.  
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Fig. 4: Effect of modulating OGG1 activity on serum TNF-α concentration on day 5 post P. berghei inocula-
tion. C + VEH= Control + Vehicle; M + VEH= Malaria + Vehicle; M +TH5487= Malaria + TH5487; M + 

O8= Malaria + O8. Data are mean ± SEM, (n=6), *P< 0.05, ***P< 0.001 
 

 
 

Fig. 5: Effect of modulating OGG1 activity on serum IFN-γ concentration on day 5 post P. berghei inocula-
tion. C + VEH= Control + Vehicle; M + VEH= Malaria + Vehicle; M +TH5487= Malaria + TH5487; M + 

O8= Malaria + O8. Data are mean ± SEM, (n=6), *P< 0.05, **P< 0.01 
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Fig. 6: Effect of modulating OGG1 activity on serum IL-2 concentration on day 5 post P. berghei inoculation. 
C + VEH= Control + Vehicle; M + VEH= Malaria + Vehicle; M +TH5487= Malaria + TH5487; M + O8= 

Malaria + O8. Data are mean ± SEM, (n=6), *P< 0.05 
 

 
 
Fig. 7: Effect of modulating OGG1 activity on serum IL-10 concentration on day 5 post P. berghei inoculation. 
C + VEH= Control + Vehicle; M + VEH= Malaria + Vehicle; M +TH5487= Malaria + TH5487; M + O8= 

Malaria + O8. Data are mean ± SEM, (n=6), **P< 0.01, ***P< 0.001 
 

 
 
Fig. 8: Effect of modulating OGG1 activity on serum IL-6 concentration on day 5 post P. berghei inoculation. 
C + VEH= Control + Vehicle; M + VEH= Malaria + Vehicle; M +TH5487= Malaria + TH5487; M + O8= 

Malaria + O8. Data are mean ± SEM, (n=6), *P< 0.51, **P< 0.01 
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Fig. 9: Effect of modulating OGG1 activity on serum IL-4 concentration on day 5 post P. berghei inoculation. 
C + VEH= Control + Vehicle; M + VEH= Malaria + Vehicle; M +TH5487= Malaria + TH5487; M + O8= 

Malaria + O8. Data are mean ± SEM, (n=6) 
 

 
 
Fig. 10: Effect of modulating OGG1 activity on serum IL-17A concentration on day 5 post P. berghei inocula-
tion. C + VEH= Control + Vehicle; M + VEH= Malaria + Vehicle; M +TH5487= Malaria + TH5487; M + 

O8= Malaria + O8. Data are mean ± SEM, (n=6) 
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the infection, suggesting a link between 
OGG1 activity and malaria infection. OGG1 
concentration increases during malaria due to 
increased oxidative stress, a vital component 
of malarial pathogenesis (10). The increased in 
percentage parasitemia caused increased levels 
of OGG1. Hence, OGG1 significantly corre-
lates with malaria infection.  Although studies 
have not yet associated OGG1 with malaria at 
present, however, some studies revealed an 
association of OGG1 with other disease con-
ditions. Huang and colleagues investigated the 
enzymatic activity of OGG1. They discovered 
that K. pneumoniae infection dramatically 
boosted OGG1levels and its activity, indicat-
ing a strong link between OGG1 and K. pneu-
moniae infection (20). The pathophysiology of 
acute pancreatitis has been linked to OGG1 
activity in a mouse model. In acute pancreati-
tis, oxidative stress promotes DNA oxidation, 
accumulating 8-OxoG in the pancreas. More-
over, the 8-OxoG build-up in the DNA might 
promotes NF-κB binding to its complemen-
tary sequence in acute pancreatitis (21).  

Modulation of OGG1 activity ameliorated 
malaria severity by improving the total normal 
RBC count in TH5487 and O8-treated mice. 
Total red blood cell count and parasitemia 
were used as indicators for determining severe 
malarial anemia in children under antimalaria 
therapy (22). Low total red blood cell count 
and increased parasitemia were used to moni-
tor severe malarial anemia in children (23). 
The reduction in the number of RBCs cannot 
be fully explained by the rupture of the highly 
infected RBCs and its clearance by splenic 
macrophages alone (24,25,26,27). It is also 
believed that the severe anemia that occurs in 
the later stages of malaria is likely due to the 
pro-inflammatory cytokines' suppression of 
erythropoiesis (28,29). Cytokines such as inter-
leukin 1 (IL 1 β) and tumor necrosis factor 
(TNF-α) are pyrogenic, and their release is 
cyclic during malaria paroxysms every 48 
hours in P. vivax and P. falciparum infections. 
Fever can help the host's defence mechanism 

by delaying the growth of pathogenic mi-
crobes with precise temperature requirements 
(30,31). A rise in parasitemia, which in turn 
causes anemia is largely responsible for the 
negative clinical outcome associated with falci-
parum malaria. The high parasitemia and low 
hemoglobin levels necessitate immediate in-
tervention to avoid severe anemia in malaria 
patients (32). 

Decreased serum levels of TNF-α, IFN-γ, 
IL-10 and IL-6 were observed in P. berghei in-
fected mice treated with TH5487. Similarly, 
significant decrease in serum levels of TNF-α, 
IL-2, IL-10 and IL-6 was observed in P. berghei 
infected mice treated with O8 OGG1 inhibi-
tor. The suppression of OGG1 activity using 
TH5487 and O8 OGG1 inhibitors to down-
regulate the immunoinflammatory response 
during malaria infection is perhaps due to the 
interference with the enzyme's glycosylase ac-
tivity and inhibition of the OGG1/8-OxoG 
binding and NF-κB activation pathway. De-
spite the unavailability of reported research 
regarding OGG1 with malaria, however, stud-
ies involving other disease conditions demon-
strated that suppression of OGG1 activity us-
ing TH5487 caused decreased levels of IL-10, 
IL-6 and TNF-α in acute pancreatitis (33). 
Similarly, TH5487 reduced levels of TNF-α 
and IL-6 during lung inflammation (13). Pre-
vious study has shown that the binding of 
OGG1 to its substrate (8-OxoG) was inhibit-
ed by TH5487 leading to decreased levels of 
TNF-α and IL-6 in the mouse lung. Even 
though, O8 inhibited OGG1 activity however, 
the binding of OGG1 to its substrate was not 
sufficiently prevented by the O8 and therefore 
could not significantly decrease inflammation 
like TH5487 (21). Another study reported that 
O8 OGG1inhibitor caused a modest decrease 
in the binding of OGG1 to its substrate (34). 
The insignificant decrease in serum IL-4 in 
this study may be attributable to the study’s 
focus on primary infection with P. berghei be-
cause IL-4 is a Th2 cytokine that has been 
linked to malarial immunity against reinfection 
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(35). The non-significant decrease in serum 
IL-4 and IL-17A may also be attributed to in-
sufficient effects of the OGG1 inhibitors to 
decrease their levels significantly during malar-
ia infection. 
 
Conclusion 
 

The concentration of OGG1 in P. berghei 
malaria-infected mice was significantly elevat-
ed and positively correlated with increasing 
levels of parasitemia, indicating the involve-
ment of OGG1 in malaria pathophysiology. 
Moreover, modulating OGG1 activity using 
TH5487 and O8-OGG1 inhibitors alleviated 
severe anemia and excessive cytokines release 
during P. berghei malaria in mice. These find-
ings suggest that therapeutic strategies target-
ing OGG1 activity as an adjuvant to existing 
antimalaria drugs may confer benefits in re-
ducing the severity of malaria infection.  
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