

Tehran University of Medical Sciences Publication http:// tums.ac.ir

Iranian J Parasitol

Open access Journal at http:// ijpa.tums.ac.ir

Iranian Society of Parasitology http:// isp.tums.ac.ir

Original Article

Sequencing and Gene Expression Analysis of *Leishmania tropica LACK*Gene

Nour HAMMOUDEH¹, Mahmoud KWEIDER², Abdul-Qader ABBADY³, and *ChadiSOUKKARIEH²

- 1. Dept. of Biotechnology, Faculty of Agriculture, Damascus University, Damascus, Syria
- 2. Dept. of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
- 3. Dept. of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria(AECS), Damascus, Syria

Received 15 May 2014 Accepted 10 Sep 2014

Keywords:

LACK gene, Cutaneous leishmaniasis, Leishmania tropica, Amastigotes, Promastigotes

*Correspondence Email: soukkarieh@gmail.com

Abstract

Background: Leishmania Homologue of receptors for Activated C Kinase (LACK) antigen is a 36-kDa protein, which provokes a very early immune response against *Leishmania* infection. There are several reports on the expression of *LACK* through different life-cycle stages of genus *Leishmania*, but only a few of them have focused on *L.tropica*.

Methods: The present study provides details of the cloning, DNA sequencing and gene expression of *LACK* in this parasite species. First, several local isolates of *Leishmania* parasites were typed in our laboratory using PCR technique to verify of *Leishmania* parasite species. After that, *LACK* gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR) technique.

Results: The typing result confirmed that all our local isolates belong to *L.tropica.* LACK gene sequence was determined and high similarity was observed with the sequences of other *Leishmania* species. Furthermore, the expression of *LACK* gene in both promastigotes and amastigotes forms was confirmed.

Conclusion: Overall, the data set the stage for future studies of the properties and immune role of *LACK* gene products.

Introduction

eishmaniasis, a vector-borne disease caused by obligate intra-macrophage protozoa, which is endemic in large areas of the tropics, subtropics and the Mediterranean basin, and has been identified as a category 1 disease by the World Health Organization (WHO) (1). Leishmania spp. cause a wide variety of diseases that range in severity from self-healing cutaneous leishm-aniasis (CL) to fatal visceral leishmaniasis (2). It is caused by more than 20 leishmanial species and is transmitted to humans by ~ 30 different species of phlebotomine sandflies (3, 4). CL is caused by many species of Leishmania; L.major, L.aethiopica and L.tropica, in the Old World (5). Nearly 90% of CL cases occur in Afghanistan, Algeria, Brazil, the Islamic Republic of Iran, Peru, Saudi Arabia and Sudan in addition to Syria (1). Two distinct developmental stages of Leishmania are recognized. Promastigotes are found within the sandfly. Promastigotes can further classified as procyclic probe mastigotes, which multiply in the gut of the sandfly, or as the infective metacyclic promastigotes (Infective stage), found in the mouthparts and anterior gut and do not divide. These differentiate into round or oval amastigotes (Diagnostic stage), which LACK flagella, once in the host (6).

Leishmania homologue of receptors for activated C kinase (LACK) antigen is a 36-kDa protein expressed in promastigotes and amastigotes forms of different Leishmania species (7), which is a member of the family of WD40 repeat proteins. These macromolecules are evolutionarily conserved tryptophan-aspartate motif proteins and have diverse but critical functions in eukaryotes, including signal transduction, RNA processing, and cell cycle control (8). LACK is essential for the parasite viability and the parasite establishment in the host. In addition to its cytoplasmic localization, LACK was recently found to also be actively secreted, and this secretion occurring via

exosomes (9). The function of LACK in Leishmania is not clear, although the immunological response to this molecule has been well studied and used for experimental vaccine studies in the mouse model (9). Since the response to LACK is a very early event in a Leishmania infection, it could also include innate elements of immunity (9). LACK antigen has been used as a tool to investigate various immunity-related mechanisms. It has been tested in several immunization experiments, providing heterogeneous results. The immunization of mice with L.donovani LACK protein protects against cutaneous L.major challenged (7, 10, 11). In human patients, as in mice, response to LACK depends strongly on the infecting Leishmania species (12).

In consideration of CL distribution in Syria, which is mostly caused by *L.tropica*, and the prominent protective role of *LACK* protein as a vaccine candidate against leishmaniasis, we aimed to determine the sequence of *LACK* gene of local isolate of *L.tropica* and to study the expression of *LACK* gene in both promastigotes and amastigotes forms.

Materials and Methods

Parasites Sampling

Samples were collected from patients visiting the Dermatology Hospital in Damascus, with lesions suspected to CL. Positive samples were collected directly from skin scars of the patients on slides. In addition, aspirated samples were taken from lesions for culturing in a semi-solid culture medium (13).

Microscopic examination

Smears on glass slides, were air dried, fixed with methanol for a few seconds and stained with Giemsa. Then, the stained smears were examined using light microscope 100×(Olympus, Japan)(3, 14).

In vitro cultivation of Leishmania

Cultures were obtained by needle aspiration from the border of the lesions. The aspirated fluid was discharged into the culture tubes contain a semisolid medium; agar and RPMI-1640 (Sigma, Germany) supplemented with 10% heat-inactivated fetal bovine serum (FBS),100U/ml L-Glutamine and 100U/ml penicillin-streptomycin (Cytogen, Germany). The cultures were incubated at 26°C. After a few days, one drop of media was examined using inverted microscope 40× (Optika, Italy). Once promastigotes were formed, the cultures were transferred to RPMI-1640 supplemented with FBS, L-Glutamine and penicillinstreptomycin as described above. To obtain axenic amastigotes, promastigotes in stationary phase in 25cm² ventilated flask were incubated at 37°C and pH 5.8 with 5% CO₂. for about 48hour (15-18).

DNA extraction

DNA was extracted from 5ml of *Leishmania* in vitro culture (~16×10⁶cell/ml). Promastigotes were harvested and washed with (1×) phosphate-buffered saline (PBS) pH7.4, pelleted by centrifugation at 3000rpm for 15minutes at room temperature. Then, genomic DNA was isolated using Wizard Genomic DNA Purification Kit (Promega, USA) according to the manufacturer's instructions.

PCR amplification

Polymerase Chain Reaction (PCR) was performed using CSB2 5'-CGAGTAGCAGAAAC

TCCCGTTCA-3' and CSB1 5'-ATTTTTCGCG ATTTT CGCAGAACG-3' primers for species determination, which are specific to the conserved region of *Leishmania* minicircle kinetoplast DNA (kDNA)(19, 20). Leishmanial DNA isolated from reference strains *L.major* (MHOM/SY/91/LEM2397) and *L.tropica* (MHOM/SY/90/LEM2066) was used as a positive control (Reference strains are a gift from French National Reference Centre for-*Leishmania*(Montpellier, France). The total volume of PCR reaction is 30μ l including (1×) Go Taq Buffer, dNTPmix (~0.2mM each dNTP), GoTaq DNA polymerase (1u) (Promega, UAS), and DNA template 0.25µg. DNA amplification was performed in the PeQlab thermocycler (PEQLAP, Germany) with 45 cycles, using an initial heating 94°C for 2min. Each cycle was divided into three stagdenaturation (94°C-30sec), annealing es: (54°C-1min), and elongation (72°C-1min). After the reaction, the material was kept at 72°C for 10min. PCR products were separated on 1% agarose gel. Fragment sizes were determined with bands of a DNA length standard (1kb DNA Ladder, Promega, USA). The length of the amplified PCR products is about 750bp.

Cloning and sequencing of LACK gene

LACK gene was amplified with the use of GoTaq DNA polymerase and LACK-FL-F 5'-ATGAACTACGAGGGTCACCT-3' and LACK-5'-CTCGGCGTCGGAGATGGACC-3' FL-R specific primers. Primers were designed according to LACK gene sequence of L.major (GenBank accession number AF363975.1). PCR products were purified using Invisorb Fragment CleanUp kit (Stratec molecular, Germany). Then, the purified fragments were cloned into the open plasmid pDrive cloning vector (QIAGEN, Germany), and sequenced by Genetic Analyzer system ABI-310 using universal specific primers for the plasmid; FP (CGCCAGGGTTTTTCCCAGTCACGAC) and RP (TCACACAGGAAACAGCTATGAC) (Applied Biosystems, USA).

Comparison of LACK sequences between Leishmania spp.

The nucleotide sequences of LACK gene in a local isolate of L.tropica (GenBank accession number: KM042903) was compared with reported LACK sequences in L.donovani, L.major, L.amazonensis, L.brazilliensis, L.chagasi, L. infantumand, L. mexicana and from three recently reported L.tropica Iranian isolates (GenBank accession numbers: AF363974.1, AF363975.1, AF363977.1, AF363978.1, U27569.1, U49695.1, AF363976.1, JX305923, JX305924, and KC763809, respectively). Sequence alignment and dendrogram prediction were performed using Geneious v4.8 software, available from www.geneious.com.

Total RNA Extraction and cDNA Synthesis

Total RNA was extracted from 5ml of Leishmania promastigotes; stationary phase $(\sim 16 \times 10^{6} \text{ cell/ml})$ and logarithmic phase $(\sim 12 \times 10^{6} \text{ cell/ml})$, as well as from axenic amastigotes (~16×10⁶cell/ml). The extraction was carried out using SV Total RNA Isolation System (Promega, USA) according to the manufacturer's instructions. Total RNA concentration was measured at 260nm wavelength using spectrophotometer (Jenway, England), and 500ng was loaded into 1% agarose gel electrophoresis to inspect its integrity and quality after extraction. Furthermore, 100ng of total RNA was applied as a negative template in a PCR reaction using LACK gene specific primers; LACK-F 5'-GCAGCTGTTCAA-GATCAACG-3' and LACK-R 5'- GGATCA-GGTTGTCCTTGTGG-3'. Then, PCR products were examined on 1% agarose gel to assure the purity of our RNA of any genomic DNA contaminants. Hereinafter, total RNA (0.5µg) was reverse transcribed into singlestranded cDNA using First Strand cDNA Synthesis Kit (Fermentas, Canada) according to the manufacturer's instructions, and the resulted cDNA (60ng) was used as PCR template.

In PCR reaction, two couples of specific primers were used. LACK-F/R primers, which amplify 230bp of *LACK* gene, and Lmr60s-F 5'-ATGCCGCCGAAGTTCGACCC-3' and Lmr60s-R 5'-CGTCGCCACACGGTTCTT-GA-3' primers, which amplify 200bp of the encoding gene for 60s ribosomal protein L12 (GenBank accession number: XM_001683-687) as a positive control for cDNA synthesis. Three independent experiments were undertaken for the selected genes in all described samples.

Results

Typing of local isolates

Typing was accomplished using PCR technique and species-specific primers CSB2/CSB1. PCR result was considered positive when a single band of correct size ~750bp was observed, which corresponds to *L.tropica* kDNA minicircle, while the band with 560bp corresponds to *L.major*. This result confirmed the identity of the analyzed parasites in comparison with the reference strains (Fig. 1).

Fig. 1: PCR result from tested leishmania isolates and from two reference strains using species-specific kDNA minicircle CSB2/CSB1 primers. Lane M: marker (1kb DNA ladder); Lanes 1 and 2 reference strains *L. major* and *L. tropica*, respectively. Lanes 3-8: local isolates of *L.tropica*. Lane 9: negative control

Cloning and sequencing of LACK gene

Full-length LACK gene was amplified from L.tropica genomic DNA using two specific primers LACK-FL-F/R. GoTaq DNA polymerase, used in PCR reaction, adds overhang A to each end of the target sequence, which allows the gene insertion into linerized pDrive cloning vector. After bacterial transformation, blue/white colony screening was performed to select positive colonies, confirmed by colony PCR using two plasmid specific primers (FP/RP) resulting in a band of bp (data not shown). Plasmid constructs from positive colonies were prepared and sent for sequencing. Sequence alignment analysis revealed the presence of similar LACK sequence form all tested L.tropica local isolates, and the resulted sequence (Fig.2) was sent for registration in NCBI database (GenBank accession number: KM042903).

11/10	100.000		_	B.D.	EI U 4	100						-		1400														
ANG M	AAC N	TAC Y	GAG R	994 9	CAC H	CTG L	AAS R	eec e	CAC	csc R	GGA G	TGG W	GTC V	Acc	900 9	CTG L	GCC A	ege C	ccs P	CAG	CAG	secs A	995 G	TOS S	TAC Y	ATC I	AAS R	67 V
Ξļū	INC IN	D A		1.00			110			120	i,			170			140			160	1			160			170	
ere V	TCG 8	A09	TOG 8	cec B	GAT D	eec	ACG	ecc A	ATC I	TCF 8	TGG W	AAG R	GOC Å	AAC N	CCC P	GAC D	esc R	CAC H	AGC 8	67G	BAC D	AGC 8	GAC D	TAC Y	667 6	C76 L	CCS P	1
	191		100 (1	em-	190 Rul	0.950		200			310				220			270			340	ŝ			250			Ję
CAC H	osc R	CPC L	GNG B	66C 6	CAC B	ACC 7	eec e	TTC F	676 V	TCS B	TGC	070 V	206 3	CTG L	GCC A	CAC H	GCC A	ADC T	GAC D	TAC Y	acs A	COG L	ACC 7	ecs A	TCC B	TGG N	GAC D	0
		271	E			280			298			зр	E)			sła,			320			330				340		
700 8	APC I	osc B	ATG M	75G M	GAC D	CTG L	esc B	AA7 N	GGC G	CAG	TGC	CAG	CGC R	AAG K	PTC	CTG L	AAG E	CAC H	ACC	ААБ У:	GAC D	eae	C₫C	ecc A	e%c	ecc A	TTC F	T
350			391	a			970			380			390	ŝ			400			410			42	1	65		420	
cca P	GAC	GAC D	ogc R	C20 L	ATC I	626 V	Tec	6c6 A	66C G	csc R	GAC	AAC N	GTG V	ATC	09C	oro V	200 N	AAC N	620 V	609 A	600	GAD B	TOC	A20 H	CAC H	636 g	TTC F	01
	440			490	²			460			470			490	0			490	-	ca case	590			sj	i .	Ch:		07i
osc R	GAC D	sce	CAC H	GAG E	GAC D	TGG W	ere V	AGC S	AGC S	ATC	TGC	PTC	8 168	CCG P	TCG 8	CTG L	GAG	CAC H	c cos	ATC	626 V	ere V	add Add	69C 6	AGC	TGG W	GAC D	A.
		530			54	1			séo			SĘD			575	8			580			59a			Бфб	10		
ACC	APC	AAG K	G 2G	266 N	AAC N	626 V	AAC N	966 6	GGC	AAG K	TGT	GAS E	CGC R	ACS T	CTC L	AAG K	GGC G	CAC H	AGC B	AAC N	₹ţ¢	679 V	Tee	AOG 7	676 V	AOS 7	676 V	T
610			620			670	i			640			850			040	5			670			080	PLICE		690	į.	
CCA P	GAC	egg G	705 8	CTG L	TGC	GOG A	TCT	GGC 8	GGC S	AAG E	GAC	GGC G	GCG	GCG	CTG L	CTG L	TGG N	GAC	CTG L	AGC S	ACC	esc G	GAG	CAG Q	CTG L	TTC	AAG E	A
1404	100			710			721	i			730			740			750	8		4 1733	766			770			750	1
AAC	GTG V	GAG E	TCS B	ccc P	ATC I	AAC N	CAS Q	ATC	GCC A	TTC	TCS B	CCC P	AAC N	OGC R	PIC F	1966 W	ATG M	Mac C	erc V	609 A	409 9	GAG E	A9G P.	TCT	C76 1	TCC	G7G V	Ty
		710			aba			010	1			870			890			0.40	i.			uşo			840			
GAC	CTG L	GAG E	AGC	aag K	sec A	676	ATT I	GCG A	GAG E	CTG L	ACS	COR P	GAC	GGC G	GCG	AAG K	ecs P	700 1	GAG	TGC C	APC I	TCC	ATT	GCC	TGS W	TCC	ecc A	GJ
			880			890			990	E.			910			020			. ağı	0		831	0					
			010		100	22.2	1205	1.2		175																		

Fig. 2: Nucleotide and deduced amino acid sequences of *L.tropica LACK* gene. The nucleotide sequence is shown in the 5'-3' direction, numbered from the first base of start codon as the position 1. Deduced amino acid sequences are located below the nucleotide sequence. Positions of *LACK* gene specific primers and of several cutting restriction enzymes from the most commonly used ones are shown. Dotes below the sequence indicate the nucleotides that differ between *L.tropica* and other species

Comparison of LACK sequences between Leishmania spp

The nucleotide sequence of L.tropica LACK from the local isolates (KM042903) was aligned with other reported LACK sequences from different Leishmania spp. as well as with three previously published L.tropica LACK gene sequences (JX305923, JX305924, and KC763809). Sequence alignment of LACK genes from these records revealed that the local isolates (KM042903) manifest three L.tropica hallmark nucleotide substitutions; an A instead of G (A/G) at position 173 (resulting in an asparagine instead of a serine), a G/C at 414 (glycine) and a T/C at 633 (serine). However, in the fourth position at 396 C/A (Arginine), the LACK gene from the local isolates differs from all other L.tropica isolates and resembles the other Leishmania species LACK genes by possessing an A instead of C. Interestingly, the L.tropica isolate (KC763809), which found to be very close to our local isolates in the dendrogram of LACK genes, was found to share with the local isolates a unique substitution; a G/A (valine) at position 534 comparing with other strains including those from L.tropica. Another unique substitution for our local isolate is a C/G (alanine/glycine) at position 443, and this change seems to be tolerated by L.tropica at this site since an S (G or C) was found in this location of the isolate (KC763809) from the same species. One confusing notice was regarding the G (lysine) at position 693, which characterizes all Leishmania species including L.tropica local isolates and the isolate (JX305924) but not the isolate (JX305923), which has an A (lysine) substitution.

However, it seems that both possibilities are also acceptable for this site in *L.tropica* since an R (G or A) was found in this location in the isolate (KC763809) from the same species (Fig.2). The result of the alignment of the *LACK* gene sequences from all records was presented in a dendrogram (Fig.3).

Remarkably, the sequence of *LACK* gene has almost perfect matching among *L.tropica* isolates. The cluster of similarity in this species could be easily distinguished from two other clusters; the first which is closer in similarity and contains *L.donovani*, *L.chagasi*, and *L.infantum*, and a second distant cluster gathering *L.amazonensis*, *L.major*, *L.brazilliensis*, and *L.mexicana*. However, *LACK* gene seems to be a highly conserved gene in *Leishmania* genius since a relatively great degree of similarity (reaching 98.1%) was observed between the farthest two sequences in the dendrogram; the local isolates of *L.tropica* and *L.mexicana*(Fig.3).

Total RNA Extraction and cDNA Synthesis

Total RNA was extracted successfully from cultured promastigotes (from stationary and logarithmic phases) and axenic amastigotes. Furthermore, total RNA electrophoresis illustrated smear of mRNA and three bands of rRNA, showing an acceptable integrity and purity of the prepared RNA (Fig.4A, B, and C). Moreover, the purity of the RNA from genomic DNA contaminants was confirmed by PCR reaction, using *LACK* gene specific primers where a negative amplification is expected (Fig.4D).

Then, total RNA was reverse transcribed, and the synthesized cDNA was used as template to amplify a small domain from *LACK* full-length gene using LACK-F/LACK-R primers.

This resulted in a single band of 230bp in all tested conditions, confirming the presence of LACK gene transcripts in both amastigotes and promastigotes; stationary and logarithmic phases, as well as a single band about 200bp refers to positive control transcripts (Fig.5).

Fig. 3: A dendrogram of *LACK* gene sequences from different *Leishmania* species that were aligned with the local *L.tropica LACK* gene (KM042903)

Fig. 4:Evaluation of the quality and purity of the extracted total RNA.**A**, **B** and **C**: depict smear of mRNA and three bands of rRNA reflecting the excellent extraction of total RNA in promastigotes; stationary and logarithmic phases, and axenic amastigotes (Lanes 1, 2 and 3), respectively. **D**: Result of PCR reactions confirming the purity of extracted total RNA from genomic DNA contaminants in promastigotes; stationary and logarithmic phases, and axenic amastigotes (Lanes 4, 5 and 6), respectively. Lane 7: negative control for PCR reaction

Fig. 5: PCR result of synthesized cDNA. PCR reaction was applied on cDNA of *LACK* gene of promastigotes; stationary and logarithmic phases, and amastigotes, respectively, and cDNA of 60s ribosomal protein L12 gene (a positive control) of promastigotes; stationary and logarithmic phases, and amastigotes, respectively. The PCR product size is approximately 230bp of the target gene (*LACK*), and 200bp of the housekeeping gene (HKG). Lane M: marker (BenchTop 100bp DNA ladder); and lane 7: Negative control

Discussion

In this study, we showed by the molecular typing with PCR technique that all Leishmania local isolates were belonging to L.tropica. Such method is widely used for distinguishing the different species of Leishmania, simply by amplifying highly conserved sequence blocks of kDNA minicircles (19, 20). Recently, PCR is used for visceral and cutaneous leishmaniasis diagnosis (21). In compared studies of PCR assays, PCR based on kDNA was the most sensitive diagnostic assay for CL and recommended for routine diagnosis (22). The genomic DNA of one isolate belonging to L.tropica was extracted and LACK gene was amplified, cloned and sequenced. Ltropica LACK nucleotide sequences from the local isolates were identical and manifest a great similarity with L.tropica LACK gene from published records. This provides further confirmation of the identity of our local isolates based on the analysis of LACK gene. Furthermore, LACK gene from local isolates showed significant homology to LACK sequence from several other species including L. donovani, L. major, L. amazonensis, L. brazilliensis, L.chagasi, L.infantum and L.mexicana, implying that LACK protein may have an important functions for the parasite life cycle. This high similarity of LACK nucleotide sequences may refer to identical amino acid sequence among the different Leishmania spp. Melby et al. (2001) had shown that L.donovani LACK deduced amino acid sequence was identical to the published L.chagasi and L.infantum se-(GenBank accession quences numbers U27569 and U49695, respectively) and differed at only 1 or 2 amino acids from the L.major. L.mexicana, L.amazonensis, and L.braziliensis sequences they obtained (10). In this work, LACK protein from our local strains was found to differ in two amino acids from other Leishmania spp. because of nucleotides substitution at position 173 and 443.

We demonstrated that LACK gene was expressed in logarithmic and stationary phases present procyclic and metacyclic promastigotes respectively, as well as in amastigotes in L.tropica. LACK protein is believed to be expressed by all Leishmania spp. in both promastigote and amastigote stages (12, 23). Recently, Hajjaran et al. (2012) study approved that LACK protein is one of the over expressed proteins in Iranian isolate of L.tropica promastigotes (24). The continuous expression and production of LACK protein reflects its important role in various stages of the parasite life cycle, and his major role was confirmed by several studies; LACK is required for vertebrate parasitization, plasminogen activation, and can function as an aggravating factor in animal host causing early phase infection. In addition, LACK can induce both proliferative and cytokine responses in peripheral blood mononuclear cells (8, 9, 11, 25). To date, there have been numerous attempts at developing a successful vaccine against leishmaniasis (2). The protective role of LACK as a vaccine in humans is not straightforward (25). On the other hand, LACK administered with IL-12 is able to direct the T cells toward a Th1 response in mice (26). However, driving of the immunodominant LACK response toward a Th1 phenotype could be the key for preventing the ill effects of Th2 responses (25). Immunization with recombinant antigens or plasmid DNA encoding Leishmania antigens represents a promising approach to vaccinate against leishmaniasis. These DNA vaccines can induce both humoral and cell-mediated immune responses and results in long lasting immunity (27).Both models, LACK DNA and recombinant LACK protein can induce protection in mice that were immunized and challenged with L.major promastigotes (27). These results, which demonstrated a successful application of LACK DNA/Protein vaccine in the infectious disease models, open up an avenue for the development of vaccines against Old World cutaneous leishmaniasis caused by L.tropica.

This report is limited to study the sequence and the expression of *LACK* gene at mRNA level in different stages of *L.tropica* parasite life cycle. However, it will obviously be essential to validate these findings at protein level when the antibody is available, as post-transcriptional mechanisms have been shown to regulate protein levels in *Leishmania* (28).

Conclusion

Our study confers a base for producing the recombinant *LACK* protein since it is of particular interest as a vaccine candidate against CL. It focuses on determining *LACK* gene sequence in *L.tropica* (local isolates), comparing its sequence with those reported in database for other *Leishmania* spp. Finally, verifying of *LACK* gene expression at mRNA level in two different phases of the parasite life cycle; logarithmic and stationary phase of promastigotes, as well amastigotes.

Acknowledgments

The authors would like to thank Damascus University for the continuous support throughout this work; Dermatology Hospital in Damascus for permission to obtain *Leishmania* specimens from CL patients; and the Atomic Energy Commission of Syria Department of Molecular Biology and Biotechnology for help with DNA sequencing. The authors declare that there is no conflict of interests.

References

- WHO. Report of the consultative meeting on cutaneous leishmaniasis word health organization. 2007:1-36.
- 2. Dunning N. *Leishmania* vaccines: From leishmanization to the era of DNA technology. Bioscience Horizons. 2009;2:73-82.
- 3. Pearson RD, Sousa AQ. Clinical spectrum of leishmaniasis. Clin Infect Dis. 1996;22:1-13.
- 4. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M. Visceral

leishmaniasis: What are the needs for diagnosis, treatment and control? Nat Rev Microbiol. 2007;5:873-882.

- Odiwuor SO, Saad AA, De Doncker S, Maes I, Laurent T, El Safi S, Mbuchi M, Buscher P, Dujardin JC, Van der Auwera G. Universal PCR assays for the differential detection of all old world *Leishmania* species. Eur J Clin Microbiol Infect Dis. 2011;30:209-218.
- 6. Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which *Leishmania* parasites can escape the host immune response: A signaling point of view. Clin Microbiol Rev. 2005;18:293-305.
- 7. Coelho EA, Tavares CA, Carvalho FA, Chaves KF, Teixeira KN, Rodrigues RC, Charest H, Matlashewski G, Gazzinelli RT, Fernandes AP. Immune responses induced by the Leishmania (Leishmania) donovani A2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (Leishmania) amazonensis infection. Infect Immun. 2003;71:3988-3994.
- 8. Kelly BL, Stetson DB, Locksley RM. *Leishmania major LACK* antigen is required for efficient vertebrate parasitization. J Exp Med. 2003;198:1689-1698.
- Gomez-Arreaza A, Acosta H, Barros-Alvarez X, Concepcion JL, Albericio F, Avilan L. *Leishmania mexicana: LACK* (leishmania homolog of receptors for activated c-kinase) is a plasminogen binding protein. Exp Parasitol. 2011;127:752-761.
- Melby PC, Yang J, Zhao W, Perez LE, Cheng J. *Leishmania donovani* p36(LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral leishmaniasis. Infect Immun. 2001;69:4719-4725.
- Okuno T, Takeuchi M, Matsumoto Y, Otsuka H. Pretreatment of *Leishmania* homologue of receptors for activated c kinase (LACK) promotes disease progression caused by *Leishmania amazonensis*. Exp Anim. 2002;51:335-341.
- 12. Kubar J, Fragaki K. *Leishmania* proteins derived from recombinant DNA: Current status and next steps. Trends Parasitol. 2006;22:111-116.
- Mugasa CM, Laurent T, Schoone GJ, Basiye FL, Saad AA, El Safi S, Kager PA, Schallig HD. Simplified molecular detection of *Leishmania* parasites in various clinical samples from

patients with leishmaniasis. Parasit Vectors. 2010;3:13.

- Chulay JD, Bryceson AD. Quantitation of amastigotes of *Leishmania donorani* in smears of splenic aspirates from patients with visceral leishmaniasis. Am J Trop Med Hyg. 1983; 32:475-479.
- 15. Sereno D, Lemesre JL. In vitro life cycle of pentamidine-resistant amastigotes: Stability of the chemoresistant phenotypes is dependent on the level of resistance induced. Antimicrob Agents Chemother. 1997;41:1898-1903.
- 16. El Fakhry Y, Ouellette M, Papadopoulou B. A proteomic approach to identify developmentally regulated proteins in *Leishmania infantum*. Proteomics. 2002;2:1007-1017.
- Barak E, Amin-Spector S, Gerliak E, Goyard S, Holland N, Zilberstein D. Differentiation of *Leishmania donovani* in host-free system: Analysis of signal perception and response. Mol Biochem Parasitol. 2005;141:99-108.
- Saar Y, Ransford A, Waldman E, Mazareb S, Amin-Spector S, Plumblee J, Turco SJ, Zilberstein D. Characterization of developmentally-regulated activities in axenic amastigotes of *Leishmania donovani*. Mol Biochem Parasitol. 1998;95:9-20.
- Ray DS. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol Cell Biol. 1989;9:1365-1367.
- Yurchenko VY, Merzlyak EM, Kolesnikov AA, Martinkina LP, Vengerov YY. Structure of *Leishmania* minicircle kinetoplast DNA classes. J Clin Microbiol. 1999;37:1656-1657.
- Gomes AH, Ferreira IM, Lima ML, Cunha EA, Garcia AS, Araujo MF, Pereira-Chioccola VL. Pcr identification of *Leishmania* in diagnosis and control of canine leishmaniasis. Vet Parasitol. 2007;144:234-241.
- 22. Bensoussan E, Nasereddin A, Jonas F, Schnur LF, Jaffe CL. Comparison of pcr assays for

diagnosis of cutaneous leishmaniasis. J Clin Microbiol. 2006;44:1435-1439.

- 23. Courret N, Prina E, Mougneau E, Saraiva EM, Sacks DL, Glaichenhaus N, Antoine JC. Presentation of the *Leishmania* antigen *LACK* by infected macrophages is dependent upon the virulence of the phagocytosed parasites. Eur J Immunol. 1999;29:762-773.
- 24. Hajjaran H, Azarian B, Mohebali M, Hadighi R, Assareh A, Vaziri B. Comparative proteomics study on meglumine antimoniate sensitive and resistant *Leishmania tropica* isolated from iranian anthroponotic cutaneous leishmaniasis patients. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit. 2012;18:165-171.
- 25. Maasho K, Satti I, Nylen S, Guzman G, Koning F, Akuffo H. A *Leishmania* homologue of receptors for activated c-kinase (LACK) induces both interferon-gamma and interleukin-10 in natural killer cells of healthy blood donors. J Infect Dis. 2000;182:570-578.
- Mougneau E, Altare F, Wakil AE, Zheng S, Coppola T, Wang ZE, Waldmann R, Locksley RM, Glaichenhaus N. Expression cloning of a protective *Leishmania* antigen. Science. 1995;268:563-566.
- 27. Gurunathan S, Sacks DL, Brown DR, Reiner SL, Charest H, Glaichenhaus N, Seder RA. Vaccination with DNA encoding the immunodominant *LACK* parasite antigen confers protective immunity to mice infected with *Leishmania major*. J Exp Med. 1997;186:1137-1147.
- 28. Kramer S. Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids. Mol Biochem Parasitol. 2012;181:61-72.