Current Understandings of Molecular Biology of Echinococcus multilocularis, a Pathogen for Alveolar Echinococcosis in Humans- a Narrative Review Article

  • Xiaoqiang WANG College of Chemistry and Bioengineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
  • Juntao DING College of Chemistry and Bioengineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
  • Xiaola GUO State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China
  • Yadong ZHENG State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China
Keywords: Echinococcus multilocu¬laris, Signalling pathway, Alternative splicing

Abstract

Background: Echinococcus multilocularis is a tiny tapeworm, responsible for 0.3~0.5 million alveolar echinococcosis in humans.Methods: We searched relevant papers published between 1981 and 2013 based on the database sources such as PubMed and Google scholar, and collected and integrated the data for analysis.Results: The parasite is able to use host-originated molecules to modulate its develop­ment and has complex signalling pathways than expected previously. E. multilocularis utilizes many types of alternative splicing approaches to generate transcript isoforms. Recently, the genome of E. multilocularis has been deciphered.Conclusion: These data will give us a profound understanding of biology of E. multilocularis, which will promote the use as a model to study helminths. 

References

Tappe D, Kern P, Frosch M. A hundred years of controversy about the taxonomic status of Echinococcus species. Acta Trop. 2010;115:167-174.

Craig PS, McManus DP, Lightowlers MW, Chabalgoity JA, Garcia HH, Gavidia CM, Gilman RH, Gonzalez AE, Lorca M, Naquira C, Nieto A, Schantz PM. Prevention and control of cystic echinococcosis. Lancet Infect Dis. 2007;7:385-394.

Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5:993-996.

Lin RY, Wang JH, Lu XM, Zhou XT, Mantion G, Wen H, Vuitton DA, Richert L. Components of the mitogen-activated protein kinase cascade are activated in hepatic cells by Echinococcus multilocularis metacestode. World J Gastroenterol. 2009;15:2116-2124.

Brehm K, Spiliotis M. The influence of host hormones and cytokines on Echinococcus

multilocularis signalling and development. Parasite. 2008;15:286-290.

Ilha MR, Loretti AP, Reis AC. Wasting and mortality in beef cattle parasitized by Eurytrema coelomaticum in the state of parana, southern brazil. Vet Parasitol. 2005;133:49-60.

Maule AG, Marks NJ. Parasitic flatworms: Molecular biology, biochemistry, immunology and physiology. Wallingord: CABI; 2006.

Brehm K. The role of evolutionarily conserved signalling systems in Echinococcus multilocularis development and host-parasite interaction. Med Microbiol Immunol. 2010;199:247-259.

Osman A, Niles EG, LoVerde PT. Expression of functional Schistosoma mansoni smad4: Role in erk-mediated transforming growth factor beta (tgf-beta) down-regulation. J Biol Chem. 2004;279:6474-6486.

McGonigle S, Feeney EL, Beall MJ, Pearce EJ. Sip, a novel sh3 domain-containing protein, interacts with Schistosoma mansoni receptor kinase 1. Mol Biochem Parasitol. 2001;114:119-123.

McGonigle S, Beall MJ, Feeney EL, Pearce EJ. Conserved role for 14-3-3epsilon downstream of type i tgfbeta receptors. FEBS Lett. 2001;490:65-69.

McGonigle S, Beall MJ, Pearce EJ. Eukaryotic initiation factor 2 alpha subunit associates with tgf beta receptors and 14-3-3 epsilon and acts as a modulator of the tgf beta response. Biochemistry. 2002;41:579-587.

Beall MJ, Pearce EJ. Human transforming growth factor-beta activates a receptor serine/threonine kinase from the intravascular parasite Schistosoma mansoni. J Biol Chem. 2001;276:31613-31619.

Zavala-Gongora R, Kroner A, Bernthaler P, Knaus P, Brehm K. A member of the transforming growth factor-beta receptor family from Echinococcus multilocularis is activated by human bone morphogenetic protein 2. Mol Biochem Parasitol. 2006;146:265-271.

Osman A, Niles EG, Verjovski-Almeida S, LoVerde PT. Schistosoma mansoni tgf-beta receptor ii: Role in host ligand-induced regulation of a schistosome target gene. PLoS Pathog. 2006;2:e54.

Gelmedin V, Spiliotis M, Brehm K. Molecular characterisation of mek1/2- and mkk3/6-like mitogen-activated protein kinase kinases (mapkk) from the fox tapeworm Echinococcus multilocularis. Int J Parasitol. 2010;40:555-567.

Hubert K, Zavala-Gongora R, Frosch M, Brehm K. Identification and characterization of pdz-1, a n-ermad specific interaction partner of the Echinococcus multilocularis erm protein elp. Mol Biochem Parasitol. 2004;134:149-154.

Petkeviciute R, Ieshko EP. The karyotypes of Triaenophorus nodulosus and T. crassus (cestoda: Pseudophyllidea). Int J Parasitol. 1991;21:11-15.

Rausch VR, Rausch RL. The karyotype of Echinococcus multilocularis (cestoda: Taeniidae). Can J Genet Cytol. 1981;23:151-154.

Furuya K. An established cell line of larval Echinococcus multilocularis. Int J Parasitol. 1991;21:233-240.

Echeverria CI, Isolabella DM, Prieto Gonzalez EA, Leonardelli A, Prada L, Perrone A, Fuchs AG. Morphological and biological characterization of cell line developed from bovine Echinococcus granulosus. In Vitro Cell Dev Biol Anim. 2010;46:781-792.

Tsai IJ, Zarowiecki M, Holroyd N et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature. 2013;496:57-63.

Smyth JD, McManus DP. The physiology and biochemistry of cestodes. Cambridge University Press; 1989.

Fernandez V, Zavala A, Musto H. Evidence for translational selection in codon usage in Echinococcus spp. Parasitology. 2001;123:203-209.

Nakao M, Yokoyama N, Sako Y, Fukunaga M, Ito A. The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (cyclophyllidea: Taeniidae). Mitochondrion. 2002;1:497-509.

Le TH, Blair D, Agatsuma T, Humair PF, Campbell NJ, Iwagami M, Littlewood DT, Peacock B, Johnston DA, Bartley J, Rollinson D, Herniou EA, Zarlenga DS, McManus DP. Phylogenies inferred from mitochondrial gene orders-a cautionary tale from the parasitic flatworms. Mol Biol Evol. 2000;17:1123-1125.

Berriman M, Haas BJ, LoVerde PT et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460:352-358.

The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium. The Schistosoma japonicum genome

reveals features of host-parasite interplay. Nature. 2009;460:345-351.

Marin M, Garat B, Pettersson U, Ehrlich R. Isolation and characterization of a middle repetitive DNA element from Echinococcus granulosus. Mol Biochem Parasitol. 1993;59:335-338.

Rosenzvit MC, Canova SG, Kamenetzky L, Guarnera EA. Echinococcus granulosus: Intraspecific genetic variation assessed by a DNA repetitive element. Parasitology. 2001;123:381-388.

Rosenzvit MC, Canova SG, Kamenetzky L, Ledesma BA, Guarnera EA. Echinococcus granulosus: Cloning and characterization of a tandemly repeated DNA element. Exp Parasitol. 1997;87:65-68.

Hastings KE. Sl trans-splicing: Easy come or easy go? Trends Genet. 2005;21:240-247.

Rajkovic A, Davis RE, Simonsen JN, Rottman FM. A spliced leader is present on a subset of mrnas from the human parasite Schistosoma mansoni. Proc Natl Acad Sci U S A. 1990;87:8879-8883.

Ferguson KC, Rothman JH. Alterations in the conserved sl1 trans-spliced leader of Caenorhabditis elegans demonstrate flexibility in length and sequence requirements in vivo. Mol Cell Biol. 1999;19:1892-1900.

Vandenberghe AE, Meedel TH, Hastings KE. Mrna 5'-leader trans-splicing in the chordates. Genes Dev. 2001;15:294-303.

Bruzik JP, Maniatis T. Spliced leader rnas from lower eukaryotes are trans-spliced in mammalian cells. Nature. 1992;360:692-695.

Brehm K, Jensen K, Frosch M. Mrna trans-splicing in the human parasitic cestode Echinococcus multilocularis. J Biol Chem. 2000;275:38311-38318.

Brehm K, Wolf M, Beland H, Kroner A, Frosch M. Analysis of differential gene expression in Echinococcus multilocularis larval stages by means of spliced leader differential display. Int J Parasitol. 2003;33:1145-1159.

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470-476.

Ben-Dov C, Hartmann B, Lundgren J, Valcarcel J. Genome-wide analysis of alternative pre-mrna splicing. J Biol Chem. 2008;283:1229-1233.

Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: Diversification, exon definition and function. Nat Rev Genet. 2010;11:345-355.

Smith M. Translational research in genetics and genomics. Oxford: Oxford University Press; 2008.

Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet. 2002;30:13-19.

Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H. Function of alternative splicing. Gene. 2005;344:1-20.

Tazi J, Bakkour N, Stamm S. Alternative splicing and disease. Biochim Biophys Acta. 2009;1792:14-26.

Gauci CG, Lightowlers MW. Alternative splicing and sequence diversity of transcripts from the oncosphere stage of Taenia solium with homology to the 45w antigen of Taenia ovis. Mol Biochem Parasitol. 2001;112:173-181.

Agorio A, Chalar C, Cardozo S, Salinas G. Alternative mrnas arising from trans-splicing code for mitochondrial and cytosolic variants of Echinococcus granulosus thioredoxin glutathione reductase. J Biol Chem. 2003;278:12920-12928.

Spiliotis M, Konrad C, Gelmedin V, Tappe D, Bruckner S, Mosch HU, Brehm K. Characterisation of emmpk1, an erk-like map kinase from Echinococcus multilocularis which is activated in response to human epidermal growth factor.

Published
2015-10-17
How to Cite
1.
WANG X, DING J, GUO X, ZHENG Y. Current Understandings of Molecular Biology of Echinococcus multilocularis, a Pathogen for Alveolar Echinococcosis in Humans- a Narrative Review Article. IJPA. 10(3):329-37.
Section
Review Article(s)