Evaluation of Microsatellites Markers to Discriminate Four Main Taeniid Tapeworms of Dogs

  • Saeedeh SHAMSADDINI Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
  • Mohammad Ali MOHAMMADI Dept. of Medical Laboratory Sciences, Sirjan School of Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
  • Seyed Reza MIRBADIE Dept. of Basic Medical Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
  • Saeid NASIBI Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
  • Sima ROSTAMI Dept. of Research and Technology, Alborz University of Medical Sciences, Karaj, Iran
  • Mansoureh DEHGHANI Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
  • Majid FASIHI HARANDI Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
Keywords: Echinococcus, Taenia, Microsatellite markers, Transmission, EmsB

Abstract

Background: Echinococcus granulosus, Taenia multiceps, Taenia ovis and Taenia hydatigena are among the most prevalent taeniid species of dogs. These tapeworms infect ruminant and humans as intermediate hosts and domestic/wild carnivores as the definitive hosts. Molecular tools using hypervariable microsatellite regions might provide more information about parasite variation. Highly variable and specific tools are needed for transmission tracking studies of canine echinococcosis as an essential element for implementation of hydatid control programs.Suitable microsatellite markers used so far are EmsJ, EmsK, EmsB, EMms1, Egmsca1, Egmsga1, U1 snRNA. The purpose of the present study was to determine the microsatellite variability of EmsB as well as six other microsatellites in major taeniid species infecting dogs in Iran.Methods: Twenty isolates of each of the four Taeniidae tapeworms were collected from sheep during routine veterinary inspection in Tehran, Alborz and Kerman provinces from October 2010 to May 2011. After DNA extraction, PCR was set up with optimum conditions using specific primers for each individual microsatellite marker. All the PCR products were evaluated by agarose gel electrophoresis. We used SDS-PAGE for evaluating patterns of PCR products in the tapeworms.Results: E. granulosus as well as Taenia species could be differentiated based on EmsB microsatellite patterns. The electrophoresis patterns of two taeniid genera were readily distinguishable. EmsB could be specifically used in epidemiological studies of canine echinococcosis.Conclusion: Different patterns of EmsB proved this microsatellite marker as a reliable tool for epidemiological studies on canine echinococcosis.

References

Nakao M, Yanagida T, Okamoto M, et al. State-of-the-art Echinococcus and Taenia: phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis. Infect Genet Evol. 2010;10(4):444-52.

Dalimi A, Sattari A, Motamedi G. A study on intestinal helminthes of dogs, foxes and jackals in the western part of Iran. Vet Parasitol. 2006;142(1-2):129-33.

Lymbery AJ, Thompson RC. The molecular epidemiology of parasite infections: tools and applications. Mol Biochem Parasitol. 2012 29;181(2):102-16.

Dehghani M, Mohammadi MA, Rostami S, Shamsaddini S, Mirbadie SR, Harandi MF. High-resolution melting analysis (HRM) for differentiation of four major Taeniidae species in dogs Taenia hydatigena, Taenia multiceps, Taenia ovis, and Echinococcus granulosus sensu stricto. Parasitol Res. 2016; 23:1-6.

Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira MLC. Origin, evolution and genome distribution of microsatellites. Genet Mol Biol. 2006;29(2):294-307.

Bretagne S, Assouline B, Vidaud D, Houin R, Vidaud M. Echinococcus multilocularis: microsatellite polymorphism in U1 snRNA genes. Exp Parasitol. 1996;82(3):324-8.

Nakao M, Sako Y, Ito A. Isolation of polymorphic microsatellite loci from the tapeworm Echinococcus multilocularis. Infect Genet Evol. 2003;3(3):159-63.

Bart J, Knapp J, Gottstein B, et al. EmsB, a tandem repeated multi-loci microsatellite, new tool to investigate the genetic diversity of Echinococcus multilocularis. Infect Genet Evol. 2006;6(5):390-400.

Knapp J, Bart J, Maillard S, Gottstein B, Piarroux R. The genomic Echinococcus microsatellite EmsB sequences: from a molecular marker to the epidemiological tool. Parasitol. 2010;137(03):439-49.

Knapp J, Bart J-M, Giraudoux P, et al. Genetic diversity of the cestode Echinococcus multilocularis in red foxes at a continental scale in Europe. PLoS Negl Trop Dis. 2009;3(6):e452.

Rostami S, Salavati R, Beech R, et al. Molecular and morphological characterization of the tapeworm Taenia hydatigena (Pallas, 1766) in sheep from Iran. J Helminthol. 2015;89(02):150-7.

Rostami S, Salavati R, Beech RN, et al. Cytochrome c oxidase subunit 1 and 12S ribosomal RNA characterization of Coenurus cerebralis from sheep in Iran. Vet Parasitol. 2013;197(1-2):141-51.

Rostami S, Talebi S, Babaei Z, et al. High resolution melting technique for molecular epidemiological studies of cystic echinococcosis: differentiating G1, G3, and G6 genotypes of Echinococcus granulosus sensu lato. Parasitol Res. 2013; 112(10):3441-7.

Knapp J, Bart JM, Glowatzki ML, et al. Assessment of use of microsatellite polymorphism analysis for improving spatial distribution tracking of Echinococcus multilocularis. J Clin Microbiol. 2007;45(9):2943-50.

Bartholomei-Santos ML, Heinzelmann LS, Oliveira RP, et al. Isolation and characterization of microsatellites from the tapeworm Echinococcus granulosus. Parasitol. 2003;126(06):599-605.

Valot B, Knapp J, Umhang G, Grenouillet F, Millon L. Genomic characterization of EmsB microsatellite loci in Echinococcus multilocularis. Infect Genet Evol. 2015; 32:338-41.

Afonso E, Knapp J, Tête N, et al. Echinococcus multilocularis in Kyrgyzstan: similarity in the Asian EmsB genotypic profiles from village populations of Eastern mole voles (Ellobius tancrei) and dogs in the Alay valley. J Helminthol. 2015; 89(06):664-70.

Gemmell MA, Roberts MG. Modelling Echinococcus life cycles. In: Thompson, R.C.A lymbery, A.J. editors. Echinococcus and Hydatid Disease. UK: CAB International; 1995. p. 333-351.

Pajuelo MJ, Eguiluz M, Dahlstrom E, et al. Identification and Characterization of Microsatellite Markers Derived from the Whole Genome Analysis of Taenia solium. PLOS Negl Trop Dis. 2015;9(12):e0004316.

Maillard S, Gottstein B, Haag KL, et al. The EmsB tandemly repeated multilocus microsatellite: a new tool to investigate genetic diversity of Echinococcus granulosus sensu lato. J Clin Microbiol. 2009;47(11):3608-16.

Knapp J, Staebler S, Bart J, et al. Echinococcus multilocularis in Svalbard, Norway: microsatellite genotyping to investigate the origin of a highly focal contamination. Infect Genet Evol. 2012;12(6):1270-4.

Han J, Bao G, Zhang D, et al. A Newly Discovered Epidemic Area of Echinococcus multilocularis in West Gansu Province in China. PloS one. 2015;10(7):e0132731.

Hegglin D, Bontadina F, Deplazes P. Human–wildlife interactions and zoonotic transmission of Echinococcus multilocularis. Trends Parasitol. 2015;31(5):167-73.

Published
2017-06-13
How to Cite
1.
SHAMSADDINI S, MOHAMMADI MA, MIRBADIE SR, NASIBI S, ROSTAMI S, DEHGHANI M, FASIHI HARANDI M. Evaluation of Microsatellites Markers to Discriminate Four Main Taeniid Tapeworms of Dogs. IJPA. 12(2):292-7.
Section
Short Communication(s)