Iranian Journal of Parasitology 2017. 12(1):69-82.

The 33.1 kDa Excretory/secretory Protein Produced by Toxo-cara canis Larvae Serves as a Potential Common Biomarker for Serodiagnosis of Toxocariasis in Paratenic Animals and Human
Huu-Hung NGUYEN, Doan-Trung VO, Thi-Tuyet-Trinh THAI, Thi-Thanh-Thao LE, Thanh-Dong LE, Nghia-Son HOANG

Abstract


Background: Toxocariasis is a prevalent zoonosis disease caused by the closely related nematode species Toxocara canis and Toxocara cati which parasitise Canidae and Felidae respectively. In paratenic hosts, larvae of these worms cause multiple organ damage. However, how these paratenic hosts response to these worms and whether any common biomarker can be applied for diagnosis are still unclear.

Methods: Excreted/secreted (E/S) antigens were prepared by culture of T. canis larvae in vitro. Using a western blot (WB) assay the humoral IgG responses, induced by Toxocara spp. larvae to the worm’s E/S antigens in different infected hosts including mice, rabbits and human, were examined.

Results: In a mouse model of toxocariasis, intraperitoneal injection of T. canis larvae induces inflammatory leukocyte accumulation in the liver and the lungs but not in the brain, although a remarkable number of larvae were detected in this organ. Mice and rabbits responded differently to Toxocara spp. resulting in distinct heterogenous WB band patterns. Mice and rabbits both responded to a 33.1 kDa E/S constituent that turned out to be the most sensitive protein for serodiagnosis. Sera from human toxocariasis patients showed heterogenous WB band patterns similar to those observed in rabbits and all responded to the 33.1 kDa band.

Conclusion: 33.1 kDa E/S protein can be considered as a critical common biomarker for toxocariasis immuno-diagnosis in both paratenic animals and human and its specificity requires further investigation.

Keywords


Toxocara; Excreted/secreted proteins; IgG response; Paratenic hosts

Full Text:

PDF

References


Schnieder T, Laabs EM, Welz C. Larval development of Toxocara canis in dogs. Vet Parasitol. 2011;175(3-4):193-206.

Van De N, Trung NV, Duyet le V, Chai JY. Molecular diagnosis of an ocular toxocariasis patient in Vietnam. Korean J Parasitol. 2013;51(5):563-7.

Romero Nunez C, Mendoza Martinez GD, Yanez Arteaga S, Ponce Macotela M, Bustamante Montes P, Ramirez Duran N. Prevalence and risk factors associated with Toxocara canis infection in children. ScientificWorldJournal. 2013;2013:572089.

Won KY, Kruszon-Moran D, Schantz PM, Jones JL. National seroprevalence and risk factors for Zoonotic Toxocara spp. infection. Am J Trop Med Hyg. 2008;79(4):552-7.

Alderete JM, Jacob CM, Pastorino AC, Elefant GR, Castro AP, Fomin AB, et al. Prevalence of Toxocara infection in schoolchildren from the Butanta region, Sao Paulo, Brazil. Mem Inst Oswaldo Cruz. 2003;98(5):593-7.

Abdi J, Darabi M, Sayehmiri K. Epidemiological situation of toxocariasis in Iran: meta-analysis and systematic review. Pak J Biol Sci. 2012;15(22):1052-5.

Fillaux J, Santillan G, Magnaval JF, Jensen O, Larrieu E, Sobrino-Becaria CD. Epidemiology of toxocariasis in a steppe environment: the Patagonia study. Am J Trop Med Hyg. 2007;76(6):1144-7.

Wilkins P. Immunodiagnosis of human toxocariasis and prospects for improved diagnostics. Curr Trop Med Rep. 2014;1:44-51.

Jin Y, Shen C, Huh S, Sohn WM, Choi MH, Hong ST. Serodiagnosis of toxocariasis by ELISA using crude antigen of Toxocara canis larvae. Korean J Parasitol. 2013;51(4):433-9.

Magnaval JF, Fabre R, Maurieres P, Charlet JP, de Larrard B. Application of the western blotting procedure for the immunodiagnosis of human toxocariasis. Parasitol Res. 1991;77(8):697-702.

Noordin R, Smith HV, Mohamad S, Maizels RM, Fong MY. Comparison of IgG-ELISA and IgG4-ELISA for Toxocara serodiagnosis. Acta Trop. 2005;93(1):57-62.

Roldan WH, Espinoza YA. Evaluation of an enzyme-linked immunoelectron transfer blot test for the confirmatory serodiagnosis of human toxocariasis. Mem Inst Oswaldo Cruz. 2009;104(3):411-8.

Ishiyamna S, Ono K, Rai SK, Uga S. Method for detecting circulating Toxocara canis antigen and its application in human serum samples. Nepal Med Coll J. 2009;11(1):9-13.

Rodriguez-Caballero A, Martinez-Gordillo MN, Medina-Flores Y, Medina-Escutia ME, Meza-Lucas A, Correa D, et al. Successful capture of Toxocara canis larva antigens from human serum samples. Parasit Vectors. 2015;8:264.

Espino AM, Diaz A, Perez A, Finlay CM. Dynamics of antigenemia and coproantigens during a human Fasciola hepatica outbreak. J Clin Microbiol. 1998;36(9):2723-6.

Meghji M, Maizels RM. Biochemical properties of larval excretory-secretory glycoproteins of the parasitic nematode Toxocara canis. Mol Biochem Parasitol. 1986;18(2):155-70.

Gonzalez-Paez GE, Alba-Hurtado F, Garcia-Tovar CG, Arguello-Garcia R. Proteinases in excretory-secretory products of Toxocara canis second-stage larvae: zymography and modeling insights. Biomed Res Int. 2014;2014:418708.

Długosz E, Wasyl K, Klockiewicz M, Wiśniewski M. Toxocara canis mucins among other excretory-secretory antigens induce in vitro secretion of cytokines by mouse splenocytes. Parasitol Res. 2015; 114(9):3365-71

Eid MM, El-Kowrany SI, Othman AA, El Gendy DI, Saied EM. Immunopathological changes in the brain of immunosuppressed mice experimentally infected with Toxocara canis. Korean J Parasitol. 2015;53(1):51-8.

Ponce-Macotela M, Rodriguez-Caballero A, Peralta-Abarca GE, Martinez-Gordillo MN. A simplified method for hatching and isolating Toxocara canis larvae to facilitate excretory-secretory antigen collection in vitro. Vet Parasitol. 2011;175(3-4):382-5.

Nicholas WL, Stewart AC, Mitchell GF. Antibody responses to Toxocara canis using sera from parasite-infected mice and protection from toxocariasis by immunisation with ES antigens. Aust J Exp Biol Med Sci. 1984;62 ( Pt 5):619-26.

Kolbekova P, Kolarova L, Vetvicka D, Syrucek M. Imaging of Toxocara canis larvae labelled by CFSE in BALB/c mice. Parasitol Res. 2011;108(4):1007-14.

Kolbekova P, Vetvicka D, Svoboda J, Skirnisson K, Leissova M, Syrucek M, et al. Toxocara canis larvae reinfecting BALB/c mice exhibit accelerated speed of migration to the host CNS. Parasitol Res. 2011;109(5):1267-78.

Camparoto ML, Fulan B, Colli CM, Paludo ML, Falavigna-Guilherme AL, Fernandez MA. Initial stage of development and migratory behavior of Toxocara canis larvae in BALB/c mouse experimental model. Genet Mol Res. 2008;7(2):444-50.

Bin LLC, Santarém VA, Laposy CB, Rubinsky-Elefant G, Roldán WH, Giuffrida R. Kinetics and avidity of anti-Toxocara antibodies (IgG) in rabbits experimentally infected with Toxocara canis. Rev Bras Parasitol Vet. 2016;25(1):99-104.

Page AP, Richards DT, Lewis JW, Omar HM, Maizels RM. Comparison of isolates and species of Toxocara and Toxascaris by biosynthetic labelling of somatic and ES proteins from infective larvae. Parasitology. 1991;103 Pt 3:451-64.

Wade SE, Georgi JR. Radiolabeling and autoradiographic tracing of Toxocara canis larvae in male mice. J Parasitol. 1987;73(1):116-20.

Poulsen CS, Skov S, Yoshida A, Skallerup P, Maruyama H, Thamsborg SM, et al. Differential serodiagnostics of Toxocara canis and Toxocara cati--is it possible? Parasite Immunol. 2015;37(4):204-7.

Loukas A, Mullin NP, Tetteh KK, Moens L, Maizels RM. A novel C-type lectin secreted by a tissue-dwelling parasitic nematode. Curr Biol. 1999;9(15):825-8.

Zhan B, Ajmera R, Geiger SM, Goncalves MT, Liu Z, Wei J, et al. Identification of immunodominant antigens for the laboratory diagnosis of toxocariasis. Trop Med Int Health. 2015; 20(12):1787-96.


Refbacks

  • There are currently no refbacks.


Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.