Experimental study on Plasmodium berghei-Anopheles stephensi-BALB/c mouse system; implications for malaria transmission blocking assays

  • Hossein DEHGHAN Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Mohammad Ali OSHAGHI Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Seyed Hassan MOSA-KAZEMI Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Mohammad Reza ABAI Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Fatemeh RAFIE Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Mehdi NATEGHPOUR Dept. of Parasitology and Medical Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Habib MOHAMMADZADEH Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran. andDept. of Medical Parasitology and Mycology, School of Health, Urmia University of Medical Sciences, Urmia, Iran Dept. of Medical Parasitology and Mycology, School of Health, Urmia University of Medical Sciences, Urmia, Iran
  • Leila FARIVAR Dept. of Parasitology and Medical Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Mulood MOHAMMADI BAVANI Dept. of Medical Entomology, School of Health, Urmia University of Medical Sciences, Urmia, Iran
Keywords: Plasmodium berghei, Anopheles stephensi, BALB/c, malaria, life cycle

Abstract

Background:Plasmodium berghei is a rodent malaria parasiteand has been very valuable means in the progress of our understanding of the essential molecular and cellular biology of the malaria parasites. Availability of hosts such as mice and vectors such as Anopheles stephensi has made this parasite a suitable system to study the parasite-host and vector-parasite relationships. Numerous studies have described life cycle and parameters influencing maintenance of the parasite within the mice or the mosquito. In this paper we revealed more details and have addressed some parameters and points influence maintenance of various life stages of the parasite (merozoites, macrogametocytes, ookinetes, oocysts and sporozoites) in the laboratory model P.berghei–A.stephensi-BALB/c mouse. This study helps understanding the biology of vertebrate-parasite and mosquito-malaria interactions that may aid in the development of a new generation of drug/vaccine and vector-based measures for malaria control.

References

WHO. Fact Sheet: World Malaria Report . Geneva: World Health Organization, 2015. http://www.who.int/malaria/media/world-malaria-report-2015/en.

Kantele A, Jokiranta TS. Review of cases with the emerging fifth human malaria parasite, Plasmodium knowlesi. Clin Infect Dis. 2011; 52, 1356–1362.

Ferreira UM, Nunes MS, Wunderlich G. Antigenic diversity and immune evasion by malaria parasites. Clin Diagn LabImmunol. 2004; 11, 987–995.

Kirkman LA, Deitsch KW. Antigenic variation and the generation of diversity in malaria parasites. Curr Opin Microbiol2012; 15, 456–462.

Francia ME, Striepen B. Cell division in apicomplexan parasites. Nat RevMicrobiol. 2014; 12, 125–136.

Miller LH, Ackerman HC, Xin-Zhuan S, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med. 2013; 19,156–167.

Eichner M, Diebner HH, Molineaux L, Collins WE, Jeffery GM, Dietz K. Genesis, sequestration and survival of Plasmodium falciparum gametocytes: parameter estimates from fitting a model to malaria therapy data. Trans R Soc Trop MedHyg. 2001; 95, 497–501.

Angrisano F, Tan YH, Sturm A, McFadden GI, Baum J. Malaria parasite colonisation of the mosquito midgut—placing the Plasmodiumookinetecentre stage. Int J Parasitol. 2012; 42, 519–527.

Vega-Rodríguez J, Ghosh AK, Kanzok SM, Dinglasan RR, Wang S, Bongio NJ, et al. Multiple pathways for Plasmodiumookinete invasion of the mosquito midgut. Proc Natl Acad Sci. USA. 2014; 111,492–500.

Hillyer JF, Barreau C, Vernick KD. Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito hemocoel. Int J Parasitol. 2007; 37,673–681.

Amino R, Thiberge S, Martin B, Celli S, Shorte S, Frischknecht F, et al. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med. 2006; 12, 220–224.

Carter R. Transmission blocking malaria vaccines. Vaccine. 2001; 19, 2309–2314.

Tomas AM, Margos G, Dimopoulos G, vanLin LH, deKoning-Ward TF, Sinha R, et al. P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO J. 2001; 20, 3975–3983.

Pradel G. Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology. 2007; 134, 1911–1929.

Saxena AK, Wu Y, Garboczi DN. Plasmodium p25 and p28 surface proteins: potential transmission-blocking vaccines. Eukaryot Cell. 2007; 6, 1260–1265.

Gholizadeh S, Basseri HR, Zakeri S, Ladoni H, Djadid ND. Cloning, expression and transmission-blocking activity of anti-PvWARP, malaria vaccine candidate, in Anopheles stephensimysorensis. Malar J. 2010; 9, 158.

Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011; 24, 377–410.

Borhani-Dizaji N, Basseri HR, Naddaf SR, Heidari M. Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium bergheiookinetes. Gene. 2014; 550(2) 245-52.

Nikolaeva D, Draper SJ, Biswas S. Toward the development of effective transmission blocking vaccines for malaria. Expert Rev Vaccines. 2015; 14, 653–680.

Zieler H, Keister DB, Dvorak JA, Ribeiro JM. A snake venom phospholipase A(2) blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surface. J Exp Biol. 2001; 204, 4157–4167.

Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002; 417, 452–455.

Knols BG, Bossin HC, Mukabana WR, Robinson AS. Transgenic mosquitoes and the fight against malaria: managing technology push in a turbulent GMO world. Am J Trop Med Hyg. 2007; 77, 232–242.

Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H, Ulge UY, et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature. 2011; 473, 212–215.

Gantza VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.Proc Natl Acad Sci. USA. 2015; 112, 6736–6743.

Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci. USA. 1997; 94, 3274–3278.

Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs-Lorena M. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol. 2007; 37, 595–603.

Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci. USA. 2012; 109, 12734–12739.

Maleki-Ravasan N, Oshaghi MA, Afshar D, Arandian MH, Hajikhani S, Akhavan AA, Yakhchali B, Shirazi MH, Rassi Y, Jafari R, Aminian K, Fazeli-Varzaneh RA, Durvasula R. Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus. Parasit Vectors. 2015; 29, 8:63.

Ren X, Hoiczyk E, Rasgon JL. Viral paratransgenesis in the malaria vector Anopheles gambiae. PLoSPathog. 2008; 4, e1000135.

Straif SC, Mbogo CN, Toure AM, Walker ED, Kaufman M, Toure YT, et al. Midgut bacteria inAnophelesgambiae and A. funestus (Diptera: Culicidae) from Kenya and Mali J MedEntomol. 1998; 35, 222–226.

Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, Mardani N, Ghoorchian S. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates.Acta Trop. 2012; 121(2), 129-134.

Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Raeisi A, Zarenejad F. Escherichia coli expressing a green fluorescent protein (GFP) in Anopheles stephensi: a preliminary model for paratransgenesis. Symbiosis. 2013; 60 17–24.

Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Terenius O. Isolation and identification of culturable bacteria from wild Anopheles culicifacies, a first step in a paratransgenesis approach.Parasit Vectors. 2014; 4, 7:419.

Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Zarenejad F, Terenius O. Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi.Parasit Vectors. 2015; 21, 8:36.

Blagborough AM, Delves MJ, Ramakrishnan C, Lal K, Butcher G, Sinden RE. Assessing transmission blockade in Plasmodium spp. Methods. Mol Biol. 2013; 923, 577–600.

Xu J, Hillyer JF, Coulibaly B, Sacko M, Dao A, et al. Wild Anopheles funestus Mosquito Genotypes Are Permissive for Infection with the Rodent Malaria Parasite, Plasmodium berghei.PLoS ONE. 2013; 8(4), e61181.

Sinden RE, Butcher GA, Beetsma AL. Maintenance of the Plasmodium berghei life cycle, In: Doolan DL(Ed.), Malaria Methods and Protocols.Humana Press Inc., Totowa, NJ, 2002; pp. 25–40.

Dearsly AL, Sinden RE, Self I. Sexual development in malarial parasites: gametocyte production, fertility and infectivity to the mosquito vector. Parasitology. 1990; 100, 359–368.

Bray RS. The mosquito transmission of Plasmodium berghei. Indian J Malariol. 1954; 8, 263–274.

Vincke IH. Experimental transmission of Plasmodium berghei. Indian J Malariol. 1954; 8, 257–262.

Yoeli M, Most H, Bone G. Plasmodium berghei: cyclical transmissions by experimentally infected Anopheles quadrimaculatus. Science. 1964; 144, 1580–1581.

Kalucy EC, McMillan B. Transmission of Plasmodium berghei (NK 65 strain) by Anopheles annulipes Walker. Nature. 1970; 225, 97.

Vaughan JA, Narum D, Azad AF. Plasmodium bergheiookinete densities in three anopheline species. J Parasitol. 1991; 77, 758–761.

Alavi Y, Arai M, Mendoza J, Tufet-Bayona M, Sinha R, et al. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodiumberghei and Plasmodium gallinaceum, and their transmission by Anophelesstephensi, Anopheles gambiae and Aedesaegypti. Int J Parasitol. 2003; 33, 933-943.

Billker O, Shaw MK, Margos G, Sinden RE. The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology. 1997; 115,1-7.

Arai M, Billker O, Morris HR, Panico M, Delcroix M, Dixon D, Ley SV, Sinden RE. Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito. Mol Biochem Parasitol. 2001; 116(1), 17-24.

Da DF, Churcher TS, Yerbanga RS, Yaméogo B, Sangaré I, Ouedraogo JB, Sinden RE, Blagborough AM, Cohuet A. Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions. Exp Parasitol. 2015; 149, 74-83.

Motard A, Landau I, Nussler A, Grau G, Baccam D, Mazier D, et al. Therole of reactive nitrogen intermediates in modulation of gametocyte infectivityof rodent malaria parasites. Parasite Immunol. 1993; 15, 21–26.

Fleck SL, Butcher GA, Sinden RE. Plasmodium berghei: serum-mediatedinhibition of infectivity of infected mice to Anopheles stephensi mosquitoes. Exp Parasitol 1994; 78, 20–27.

Sinden RE, Barker GC, Paton MJ, Fleck SL, Butcher GA, Waters A, Janse CJ, Rodriguez MH. Factors regulating natural transmission of Plasmodium berghei to the mosquito vector, and the cloning of a transmission-blocking immunogen. Parassitologia. 1993; 35, 107-112

Ponnudurai T, Lensen AH, Van-Gemert GJ, Bensink MP, Bolmer M, Meuwissen JH. Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes.Parasitology. 1989; 98 (Pt 2), 165-73.

Robert V, le-Goff G, Gouagna LC, Sinden M, Kieboom J, Kroneman R, Verhave JP. Kinetics and efficiency of Plasmodium falciparum development in the midguts of Anopheles gambiae,A. funestus and A. nili. Ann Trop Med Parasitol. 1998; 92(1), 115-8.

Gouagna LC, Mulder B, Noubissi E, Tchuinkam T, Verhave JP, Boudin C. The early sporogonic cycle of Plasmodium falciparum in laboratory-infected Anopheles gambiae: an estimation of parasite efficacy. Trop Med Int Health. 1998; 3(1), 21-28.

Drakeley CJ, Secka I, Correa S, Greenwood BM, Targett GA. Host haematological factors influencing the transmission of Plasmodium falciparum gametocytes to Anopheles gambiaes.s. mosquitoes. Trop Med Int Health. 1999; 4(2), 131-138.

Boudin C, Van-Der-Kolk M, Tchuinkam T, Gouagna C, Bonnet S, Safeukui I, Mulder B, Meunier JY, Verhave JP. Plasmodium falciparum transmission blocking immunity under conditions of low and high endemicity in Cameroon. Parasite Immunol. 2004; 26(2), 105-110.

Pollitt LC, Churcher TS, Dawes EJ, Khan SM, Sajid M, Basanez MG. Costs of crowding for the transmission of malaria parasites. Evol Appl. 2013; 6, 617–629.

Published
2018-12-18
How to Cite
1.
DEHGHAN H, OSHAGHI MA, MOSA-KAZEMI SH, ABAI MR, RAFIE F, NATEGHPOUR M, MOHAMMADZADEH H, FARIVAR L, MOHAMMADI BAVANI M. Experimental study on Plasmodium berghei-Anopheles stephensi-BALB/c mouse system; implications for malaria transmission blocking assays. Iran J Parasitol. 13(4):549-559.
Section
Original Article(s)